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INTRODUCTION 

For well over a century, scientists and engineers have evidenced an interest 
in the dynamics of solids containing liquid cavities. Apart from the classical 
contributions reported in Lamb’s first edition of “Hydrodynamics” (1895), only 
recently has the problem of a partly filled cavity with free surface been explored. 
Numerous articles devoted to this problem have been published in various countries. 
This was stimulated by a great number of technical problems requiring the 
determination of the motion of a body with partly filled liquid cavity. Examples of 
these include anti-roll passive tank stabilization systems employed in ocean-going 
ships, dynamics of rockets, and seismic oscillations of structures under water 
pressure. 

The combined efforts of workers in the field have given us a comprehensive 
theory branching out in several directions. To present this theory completely is 
beyond the scope of this study; therefore the discussion is not general but is 
restricted to those aspects concerning stability and control of liquid-rocket powered 
missiles and space vehicles. 

That the effect of liquid propellant motions must be considered in the design of 
most liquid-rocket powered missiles and space vehicles is well known; for the most 
part, the problem is one of vehicle stability and control. Generally, the propellant 
motions interact with both the control system and vehicle dynamics, which also 
couple with each other. The natural frequencies of the oscillating propellants are 
usually much closer to the rigid body control frequencies than to the elastic body 
frequencies. If the natural frequencies of the propellants become too close to the 
control frequency of the vehicle or the natural frequency of the control sensor, the 
situation may become critical. Under these circumstances, the oscillating propellants 
exert large forces and moments on the vehicle, which may saturate the control system 
and ultimately lead to structural failure. Thus, the responses of forces and moments 
exerted by the vibrating propellants on the vehicle must be sufficiently well defined 
analytically so that their effects can be incorporated into analyses of the overall system 
dynamic behavior. 

Some recent surveys [: 1, 2 1 catalogue the numerous papers available in the 
field; in the main, the studies cited therein treat general and specific problems of 
the motion of liquids in fixed and moving vessels. The methods used in these studies 
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are varied, and the assumptions are based on approximations which are sometimes 
confusing and difficult to justify. We will not discuss these papers in detail; however, 
a perusal of them by the reader will disclose an apparent lack of agreement as to 
the exact analytic statement for the motion of liquids enclosed in moving containers. 
Moreover, the usual method of obtaining the forces exerted on a space vehicle by 
oscillating propellants is to compute the liquid reactions forces assuming that the 
motion of the propellant tanks does not depend on the dynamic state of the vehicle. 
These reaction forces then are treated as generalized forces acting on the vehicle 
in an arbitrary state of motion. This computation of events generally gives rise to 
flequivalent’f mechanical models, which are then combined with similar representations 
for other dynamic elements of the vehicle to obtain the overall system dynamic models. 
Generally, in such an investigation the analyst uses a reference system moving with 
respect to inertial space. Invariably, the motions of the propellant tanks are 
linearized with respect to the tank rates, both translation and rotation. These rates, 
in turn, depend on the vehicle body rates. The arbitrary linearization of the equations 
of motion with respect to the body rates is questionable and can lead to serious 
difficulties. This and the fact that the propellant tanks have not been considered as an 
integral part of the vehicle make it difficult for the engineer to properly assess the 
attitude stability characteristics of liquid propellant space vehicles. 

There appears to be a need for an analytical review that will clarify concept 
and introduce the engineer to the more advanced works and the research literature. 
The main purpose of this investigation is to satisfy this need. To avoid becoming 
a collection of formulae, many fundamental notions presented elsewhere are 
included in detail. An excellent collection of such formulae may be found in 
[3, 4, 51, to which the reader is referred. 

The basic materials treated have been kept as modest as possible. A brief 
review of certain fundamental results from theoretical hydrodynamics necessary 
to describe the motion of a heavy liquid enclosed in a rigid vessel which is itself 
in motion is presented. An energy formulation of the system (vessel plus liquid) 
is written for six degrees of freedom. These concepts are then extended to the 
case of the planar motion of a liquid propellant vehicle having a single tank and 
8 ngine . For simplicity the tank is taken to be a prismatic cylinder, The results 
apply trivially to more than one tank and engine. The planar equations of motion 
are then used to obtain the perturbation equations of motion. To this end, the 
vehicle motion is treated as a summation of perturbations from a known reference 
motion and motion in which vehicle body axes remain coincident with reference 
axes. The role of the liquid motions in the perturbation equations are then isolated 
and identified. The liquid in the propellant tank is replaced by a simple mechanical 
system (system of pendula plus discrete mass and moment of inertia), and planar 
perturbation equations for the entire vehicle are derived. The effects of the 
mechanical system motions in the perturbation equations are isolated and identified. 
The role of the liquid motions and mechanical system motions are compared to show 
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that the mechanical system can duplicate the action of the liquid. The analysis 
is extended to tanks of arbitrary shape having rotational symmetry, such as 
commonly occurs in most vehicles. The role of the liquid motions and mechanical 
system motions are again compared. The oscillations of a heavy liquid in a fixed 
vessel are treated. In addition, the oscillations of systems of solid bodies with a 
liquid (systems with a liquid “membeP) are considered. 

The review doss not deal with the two directions in which intensive investigations 
are being currently conducted. These are non-linear oscillations and the problem of 
damping. A study of these questions involves difficulties of a fundamental nature. 
A number of algorithms pertaining to the theory of non-linear oscillations have been 
published, but all of them are unwieldly and, most important, no one has thus far 
managed to prove their convergence. Moreover, the very question of the existence 
of periodic solutions of resulting non-linear systems still remains open. Even more 
complicated is the problem of oscillation of a viscous liquid. The formulation of 
the problems comprises a great number of difficulties. The problems of the 
dynamics of a body with a liquid under conditions of weightlessness have become 
pertinent most recently, but only the first steps have so far been made in this 
direction and it is still premature to speak of results. 
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BASIC EQUATIONS FOR MOTION. OF A HEAVY LIQUID ENCLOSED IN 
A PARTLY FILLED VESSEL WHICH IS ITSELF IN MOTION 

Consider the motion of a frictionless liquid enclosed in a partly filled vessel 
which is itself in motion, Fig. 1. To describe the motion of the system, take a 
cartesian frame of reference fixed relatively to the container, say an origin o and 
three axes ox, oy, oz. Reference oxyz is orientated in such a manner that oz is 
measured positively along the outward directed normal to the undisturbed free 
surface. Thus the free surface, denoted by S(t), coincides with plane xoy (the 
plane z = o) when the container and liquid are at rest. 

Let 

z = P (x9 Y, t) (2-U 

be the equation of S(t) when it is displaced. Denote by C(t) the wetted surface of 
the vessel, and by 7 (t) the variable volume enclosed by S(t) and C (t). Let C , 7, 
and S represent the corresponding values of Z(t), 7 (t) and S(t) in the undisturbed 
position. All surfaces are assumed to be piece wise smooth. 

. 

Suppose that at time t the vessel is coincident with inertial space and that 
it is moving relatively to inertial space with motion described by an observer in 
inertial space as a velocity u of o and an angular velocity ij . Then the position 
vector I= of a particular liquid particle Pc T(t) at time t is the same for an 
observer moving with the vessel as it is for an observer in inertial space. 

The point P, if rigidly attached to the moving frame of reference oxyz, has 
the velocity 

f=a+wxr. P-2) 

Thus, if P is fixed in inertial space instead of in oxyz, it will appear to an observer 
in oxyz to move with velocity -V. 

Denote by (T(P, t), V(P, t) the velocities of the liquid particle at point 
P(x, y, z) c T(t) at time t as estimated by observers in inertial space and 
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Figure 1. Partially filled vessel in motion. 
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oxyz rerpctively . Then 

q=V+~,;=!g, (2.3) 

in which the position vector F is referred to the moving reference oxyz. 

Assume the liquid to be homogeneous and incompressible throughout the 
motion. Moreover, neglect interfacial tension forces and capillary contact effects 
between liquid and boundary. Then, the motion of the liquid in 7 (t) , when 
referred to the moving frame of reference oxyz, is completely described by the 
following formulae: 
Equation of motion 

3 +wxq=g 
. 

dt 
+2.ii,xv+r?,xF+i;jx(~xi)+H=~--IVp, 

P 
-T(t) . 

Equation of continuity 

vq= VT = 0 , PcT(t) 

Boundary conditions (kinematical) 

qn - Vn = vn = 0, PEE(t) 

qn - Vn = ct co8 (n, z), PCS(t) 

Boundary conditions (physical) 

PJ-C(t)9 

p(x, y, c, t) = const., PC S(t) 

Forces and moments 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

-pl = P fl 9 dT + P Jn (fi x @ dT - P JB Fd’T + p D C$ t cos(n, z)ds (2.8) 

w 7 (t) T w s(t) 
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dT +2P Jn 6 x y)dT+ P [i& h x r)dT + P JD [Q x (Q x F)]dT 

T w T 6) T w 

- P DJ (f’ - B)dT + p D V ct cos(n, z)ds, 
T w w 

7 w 

)dT + P flJ [G (?.a -q(&)ldT - psss (i; x ?)dT 

T w T(t) T 0) 

+ P Jl (F x ij,) c t cos(n, z)ds 
SW 

= Par (P x 
7 0) 

&;)dT +2 ,CiJB [w (i?ii) -V(&)]dT + pJ&ijF) (i! x ;)dT 
7 w 7 tt) 

7 w 

+ p JJ (i! x c) C t cos(n, z)ds 
SW 

in which ? is the vector of body forces (such as gravity) per unit mass; p is the 
mass density; p is the pressure intensity at point P(x, y, z) (independent of 
direction); a is the absolute acceleration of 0 as measured by an observer in 
inertial space. 

Formula (1.4) is the second law of motion applied to a liquid particle of 
infinitesimal volume, and can also be obtained immediately from Euler’s 
equation on application of the classical expression for rates of change of a 
vector viewed from inertial and moving space. Note that the equation of motion 
is expressed in either of two forms; one of which is in terms of the absolute 
velocity 4, and the other in terms of the relative velocity V. 

Formula (1.5) states that the net flow rate of liquid into any small volume 
must be zero. It likewise is expressed in either of two forms. 

Formula (1.6) is the kinematic condition which must be satisfied at the 
solid boundary C (t), namely, that the component of velocity normal to the 
boundary must be equal to the velocity component of the boundary normal to itself. 
Note that the component of relative velocity normal to C(t) is zero, vn = 0; 
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the component of the absolute velocity normal to C(t) is equal to Vn, the velocity 
of the boundary normal to itself. This follows from the relationship (2.3). 

Formula (2. a) is the kinematic condition which must be satisfied t the free 
surface, Lord Kelvin% condition, and is a corollary of (2.5). 2 Cd= 3) 
is the apparent velocity of movement of the free surface S(t) in the dire&on oz; 
i. e. , C t is the velocity of movement along the straight line x = const. , y = const. , 
of the point of intersection of the surface z = c with this straight line. 

Formula (2.71) states that for a frictionless liquid in contact with a rigid 
boundary, the liquid thrust shall be normal to the boundary. 

Formula (2.7a) expresses the constancy of pressure at the free surface S(t). 

Formula (2.81), expressed in either of two forms, is the computation of the 
force resulting from the action of the liquid motion on the vessel surface C (t). It 
is obtained from an integration of formula (2.4) throughout 7 (t) and application of 
the divergence theorem and formulae (2.5, 6, 7). 

Formula (2.82) is the computation for the moments about the origin of the 
forces exerted by the liquid on the vessel surface C(t). 

There is an important corollary to formula (2.4) concerning the vorticity 
of liquid elements. Let the extraneous body forces be conservative, 

f=-vsa P-9) 

then, on introducing formula (2.9) into (2.4) and operating with vx on the resulting 
equation of motion, we get 

d (vxtg+GxOxq)= [iv xqblq, 
dt 

(2.10) 

3 vxq) = as (vxq)+[(q- 
and 

d (v x v) + i;, x (v x 7) +2L% = 2v (G) 
dt 

VblO xq), 

(2.11) 

. i; x (vx v) + [(VxT4~1~, 

%ee notes. 
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G&v xvi> =a at (vx 5).+ (TV) &x9) , 
in which (V x 9) is the absolute vorticity of liquid elements and (v x V) the relative 
vorticity of liquid elements, that is, the vorticity as measured by an observer in 
inertial and moving space respectively. (Vx q) and (V x V) are not independent. 
Indeed, operating on (2.3) with v x we see 

(v x q) =2i; + (vxd (2.12) 

Consider a liquid particle which has no vorticity (v x $ = 0; from (2 .lO), 
it follows’ that 

and therefore the particle never acquires vorticity. This implies that if 

(0 x FJ = 0 (2.13) 

At some time t = to, then it is zero for all time, and 

(v x 5) = -2 ij (2.14) 

using (2.12). 

There is a significant corollary to formula (2.5) concerning the flux of the 
liquid. From the divergence theorem 

which, in light of formulae (2.5, 6), gives 

fl C t cos(n, z) ds = 0 . 
SW 

(2.15) 

It is known that the most general solution of formula (2.5) can be expressed 
in either of the two forms ‘, 6 1 

q=~+Q,*=V(b,Vql=O, (2.16) 

if = VtJ + 5 , Jo = VIC, , vi+ = 0. 
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Vectors &and To are the irrotatiornil components of the absolute and relative 
velocity vectors respectively. & , 11 are the corresponding vertical components. 

Substituting (2.16) into formula (2.5), we obtain 

V@=V@= 0, (2.17) 

which states that the irrotational components of the absolute and relative velocity 
vectors must satisfy Laplace’s equation. 

When there is no vorticity 

ql=o, 

(v x t,) = -2 i; , 

(2.18) 

formulae (2, 10, 11) are satisfied identically and the absolute velocity is completely 
determined to within an arbitrary additive function of time by the velocity 
potential @ . 

Formula (2.18a) is satisfied identically if we take 

51 = -6x i; 

Thus the relative velocity becomes 

(2.19) 

~=v#.-wxr (2.20) 

Introducing formulae (2.161) with i$ = 0 and (2.20) into (2.4) and integrating 
the resulting equation of motion, we get 

E+ 
P 

Va = D(t) 

2 + $+ + sa + ZF +$ v2 - ; (c-c x FP = C(t) 
P 

(2.21) 

where 
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and D(t), C(t) are instantaneous constants, that is, functions of t only. 
Therefore at a given instant the constants have the same value throughout the liquid. 
Expression (2.21) is the unsteady pressure equation expressed in either of two forms. 

Substituting formulae (2.1% ) with & = 0 and (2.20) into the boundary conditions 
(2.6), we obtain 

w -= 
an 

iiii + 0, b co8 6, z) - z co8 6, y)l + bY G cos (n, x) - x co8 6, z)l 

+ w, [x co8 (n, y) - y cos.(n, x)1 , PC C W , (2.22) 

as -= 
an 

iiii + 0, Cy co8 (n, z) - zcos Sn, y)l+ h+Czcos (n, x)-xc08 (n, z)l 

+ w, [xc08 6, y) -ycos (n, x)1+ Ctcos (n, z), PCS(t) , 

2.!L 
an 

0, kc08 (n, z)- zcos (n, y)l + WY Cz co8 h, x) - x co8 (n, z) 1 

+ w, [x co8 (n, y) - y co8 (n, x)1 , PC C(t) , 

LL 
an 

u, ljf co8 (n, z) - z co8 6, y)l + my Cz co8 (n, x) - x cos (n, z)l 

+ WZ[xcos(n, y)-ycos(n, x)1+ &cos(n, z), POW), 

where cos (n, x), . . . denote the cosines of the angles formed by the outward 
directed normal to the surface of contact at the point P. 

Introduce a new potential Cp such that 

~~~P-w,yz-w,xy-w,xz+~ot~.u~ dt + Q , 

9= -0, YZ - WY xz - wxy+Q, 

@ = $ + iii! + s,’ + u2 dt . 

(2.23) 

then it follows from (2.17, 21, 22) that 

AQ= 0, Pc T(t), (2.24) 

E++dJ.yz- 
P 

cir,xz-~,xy+~~+n+g~-_(~xx~=C(t), PcT(t), 

(2.25) 
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2 [!&ycos(n, z) +(LL zcos(n, x)+WZxcos(n, y)l, PEE(t) (2.26) 

2 [LO, y co8 ( n, z) + W, z co8 (n, x) + U, x co8 (n, y)l + C t co8 (n, z) , 

PC S(t) . 

Since the pressure must be independent of position at the free surface we require 

acp 
at 

- L& yz - 3y xz - 4 xy+HF+n+Qv”-Hi; x i+=o, PCS(t), (z=lg, 
(2.27) 

which is the condition (2.7a ) . The forces and moments (2.8) become 

-F1,=Pln$x (2 )dT+$pJJJgz dT- pJfl fxdT+pa, JJs dT (2.28) 
T 0) 7- 0) T w 7 w 

-p($ + @) JJcfx dT+ Pbx ‘$ - 5,) JJs ydT+ p(o, o, - LjY) Jfl z dT 
-l- 0) w T (0 

-Fly =PJIT~ (a*)dT+g Pfilg dT-pJJlf, dT +pa, JJ/dT 
T(t) a Y at T(t) a y W) T w 

-F1, = pJngz (z) dT+&PJJJ g2 dT- PJD f, di+ pa, JodT 
T w w T w T w 

+ Pkx a,- 6Y)$)xdT+P(W, %-hi) DydT-p(ti +L@ JlszdT 
T(t) T tt) 

‘Ll, =p~~[y~(~)-z~(~)ldT+:Pm~~ -z $;)dT 
T 0) T w 

-PJu(Yf.- zf,)dT+ Pa, JJydT- p aY JJJzdT 
T w T 0) I- (t) 

+ P (0, w, - k.)lflxydT-p (0, ‘$-cj,)~~xzdT 
T V) T U) 
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+pb, %- ‘&I a $ a.+ Phi - @) ay z dT 
TV) T 6) 

-P(q%- &) a. z2 dT 
T(t) 

41, =PscI’ Cz& ta2) -x b (!%)]dT++Pfll (z?!? 
T w ax at az at T(t) aX 

- x 2 ) dT 

-PJxJ$f.- xf,)dT-Pa.axdT+pa,flJzdT-p(w, w,-&;),)~~xsdT 
T w T w T w 

+ Pbx wx- &) j-J za dT 
T 0) 

$-x(~)ldT+;P~(x$a-y&~)dT 
70) . 

-PJll(xf, -Yf.)dT+Pa,DlxdT-p axD[ydT+p(Wx wY -~&)ll~dT 
7 w T w T 0) T 0) 

+Pw-s)JJJ xydT+P(o, o,- cjl)SSSxzdT-P(wxw,-~,)SSSY2 dT 
T(t) w TV) 

Given ii, l, certain initial conditions and the geometry of the vessel, we 
can in principle find Q . With Q known, the motion of.the liquid and its important 
consequences are completely determined. It should be pointed out that without 
further knowledge of 6 and ti, except insofar as they are given functions of time. 
we cannot logically discard nonlinearities involving them. 

The problem as stated is somewhat academic because in dynamic studies 
of aerospace vehicles ii and i3 are not given functions of time which are 
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independent of vehicle motion and orientation with respect to inertial space. 
In reality they depend on the body rates of the vehicle and consequently are not 
known until the total motion of the system is known. 
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SUMMARY OF FUNDAMENTAL RESULTS 

The basic equations describing the motion of a liquid enclosed in a partly 
filled vessel which is itself in motion have been derived. Principal assumptions 
employed in the derivation were: 

(1) frictionless liquid; 
(2) homogeneous liquid; 
(3) liquid incompressible throughout motion; 
(4) interfacial tension forces and capillary contact effects 

between liquid and boundaries neglected; 
(5) liquid motion irrotational as viewed by an observer 

in inertial space. 

The pertinent formulae derived are: 

(1) Velocities 

q=fi-O,Vyz-U,Vxz-U, “xy+vQ (2.29) 

v= - W,vyz-Lcyvxz-W, vxy+vQ 

(2) Equation of motion 

E+aQ-&, yz- 
P at 

&,xz-Lj,xy+B?+S-I++v’-$(i;xX?=C(t) (2.30) 

(3) Equation of continuity 

AQ= 0 

(4) Boundary conditions (kinematical) 

acp= 
an 

2[wxyco8(n, Z)+W,ZCOS(~, x~+~,xcos~~,y~l,P~C(t), (2.31) 

2[w,ycos(n, z)+Oyzcos(n, x)+W,xcosh, y)l +Lcos(n, z),PES(t), 

flJ ct cos ( n, z> ds = 0 
SW 
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(5) Constancy of preesure at free 13~rface 

~~ye-~xz-~,xy+I~+n+8~--9(0%~.)‘=0, z=c (2.32) 

(6) Force8 and momenta 

-P(~+~)SrSxd7+p(w,w,-B,)~yd7+~(w,w,-3,)~zd7 
T U) w 7 w 

4, =pflb (a*)dT+Q pfl* d7-pJJfl dT +pa, DdT 
T(t) a Y ‘t T(t) a y W) 7 w 

+P(‘% %-‘k)~,jb.dT-d4 +w:)~ydT+p(w,w,-LLI,)~~zdT 
T w T(t) T 0) 

-Fl, = pflb (*) dT+bpJn $!! dT- pa f, dT+ pa, DdT 
T(t) az at w 7 0) T VI 

+pb, w,- ~,)~xdT+p(w,w.-~~~ydT-p(~+~)JSSedT T 0) T w T @I 

- PTlg ( Y fz - zf,)dT+ Pa, JByd%- p aY flzdT 
7 w T (t) 

+ d% wz - Gx) ]fl sjd dT + p(t$ - @) ay z dT 
T(t) I- 0) 

- P ( 4 & - L3,) a za dT 
T(t) 

2-14 



-Ll,=Pfl bb ta2) -x b (*)]dT++pfl (,% -x &!f )dT 
T U) ax at a2 a.t 7(t) ax a2 

-pJl.f(xf, -yfx)dT+PaY,&/xdT-p a,aydT+p(Wx w, -h)DJ$dT 
T w T 0) T U) T U) 

-P(o,“+L;)I)~~~yzdT 
w 

Thus, with ii, i;, , certain initial conditions and the geometry of the vessel 
given, cp can presumably be determined. Consequently the motion of the liquid 
in 7 (t) is hewn. It should be pointed out that the determination of Cp involves 
difficulties of a fundamental nature. A number of algorithms pertaining to the 
non-linear oscillations of a liquid enclosed in partly filled prismatic cylinders 
have been published but all of them are still very clumsy and, most important, 
no one has thus far succeeded in proving their convergence. Moreover, the 
very question of the exfstence of periodic solutions of non-linear systems still 
remains open. 
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STOKES’ PROBLEM 

Consider the classical problem of the motion of a heavy liquid enclosed in a 
completely filled vessel which is itself in motion. 

Denote by 7 the volume of the liquid cavity (the plane S is no longer a free 
surface). Let the volume 7 be set in motion in any manner. Moreover, assume 
that this motion is known to us, i. e. , the instantaneous translational and angular 
velocities of the vessel are known. The velocity potential of the absolute motion 
of the liquid must satisfy 

A@= o 

The boundary condition is 

a@ 
an 

=iiii+k.$ [ycos(n, z)-zcos(n, y)l+U,I:zcos(n, x)-xcos(n, 211 

+ wz [x cos (n, y) - y cos (n, x11, PE C + S . (2.34) 

This condition may be satisfied by writing 

@ = l.k f#J$ + uy @y” + uz @ + w, a*+ w, @ + 0, cp: , 

where Q,” , . . . are harmonic and satisfy the boundary conditions 

aecos (n 
an 

f x) S.@ = 
’ an 

cos (n, y> , z’= cos (n, z> , PC C + S , 

a@=y~~s(n, z)-zcos(n, y), PEC+S, 
an 

w = G z cos (n, x> - x cos (n, z) , PC C + S , 

*Z=xcos(n,y)-ycos(n,x), PcC+S, 
an 

(2.35) 

so that @ , . . . depend solely on the geometry of 7 and not on its motion. Such is 
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the classical problem of Stokes. @F , . . . are sometimes called Stokes 
potentials. 

If for @F , # , Cp?, & ,@, Q? we substitute x, y, z, - zy+#, 
-xz +@, - x y + Q? we get 

Q=~~m ux (y Z - Q?) - my (x z - Q$ - 0, (x y - Q$ , 

where @ , . . . are harmonic and satisfy conditions 

*i+= 
an 

2 y cos (n, z) , PC C + S , 

$f = 2 2 co9 (n, x> , PE C + S , 

y = 2 x cos (l-l, y) , PCCSS. 

Note that the differential System 

A& =o, -7, 

y =2ycos(n, z), PEC+S 

is equivalent to the variational problem for the functional 

Similarly, 

GT =$JJJ (V@‘i dT- 2stz@ z cos (n, x) ds , 
7 

G? =$~~~(Vq$)z dT- 2lQ?xcos (n, y)ds . 
7 s+c 

These expressions may be combined into a single formula 

Gf (@) = ii$fl (VQ*J2 dT- Zs&Q* ‘Jr ds 
7 

(2.36) 

(2.37) 

(2.38) 
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where 

71 = 

’ ycos (n, z) for i = 1 , 

zcos (n, x) for i = 2 , 

\ xcos (n, y) for i = 3 . 

Thus the problem of determining Stokes’ potentials is equivalent to finding 
the extremum of functional (2.3 8) . The method of Ritz may be used to solve this 
variational problem. 
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ENERGY FORMULATION 

Consider the motion of the entire system (liquid plus solid). Denote by T 
the total kinetic energy of the system. Thus 

T =Tl +T,, 

where TI is the kinetic energy of the liquid in T(t) and T, is the kinetic energy of 
the solid, i.e. , vessel proper. 7: P*represent the volume and mass density of 
the vessel proper,respectively. Let l& be the potential energy of the liquid in 7 (t), 

then, the equations of motion for the complete system may be written as 

&($+G X aT - F;ext + u p*f&-++DJp fdT =- 
(2.39) 

7” T w 
aT +iixy 
au 

=cat +~~P*(i=x~)dT* +J&J(Fxf) dT, 
7* T (t) 

z (TI + &) = - 0 p(Vn+vn)ds=- u pVnds, 
SW + c (t) SW + m 

P (x, Y, c, t> = 0, PCS(t) , 

V$ =0, ?‘CT(t) 

I 
0, przw, 

Vn = 
pt cos (n, z) , PC S(t) , 
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in which JJl p T dT, JJs p* T dT* are the resultant of body forces per unit mass 
T 0) 7* 

acting on the liquid in T(t) and on the solid respectively, and Put., LIxt are 
externally applied forces and moments. 

Formulae (2.391) and (2.39a) are Kirchhoff’s equations in vector form 
(Lagrange’s equations referred to moving coordinates). 

Formula (2.39a) states that the rate of change of total energy of any portion 
of the liquid (assumed incompressible) as it moves about is equal to the rate of 
working of the pressures on the boundary. 
assumed that !?$ = 0 . 

In deriving this expression it was 
The unsteady pressure equation may be derived from 

the formula. Moreover, condition (2.394) is a corollary of (2.394 for the 
irrotational motion of a liquid enclosed in a fixed vessel. 

Formulae (2.391) and (2.39s) can be written as 

Now, if the liquid had been absent (T1 = 0), the right side of these equations would 
have contained only EeXt + JJJf dT” and Lext + Jllp* ( ? x T) dT * . The action of the 

7* 7* 

liquid pressures must therefore be represented by the remaining terms on the right, 
Thus the action of the liquid is represented by the force and moment 

which can be verified from formulae (2.8). To be sure 

-=~~(G+6xf+t)pdT, aT1 
aa 

T w 
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aTl _ 
aij- 

j-fj+xii+Px(czxF) +FxdPdT, 

7 W 

i;, x $$=~(c;lx8+.Gx(GxF)+dxt)PdT, 

7 0) 

ii, x ~=~~~[OX(~.X~)-(~P)(~~XP) +Gx(iExdl~dT, 

7 0) 

i+hxr+GxY+z+(OV)3]dT, [k(pdT)=Ol 

=SSS(t+~xf+5xv)pdT+SSSa~)dT~SSptTtcos(n, z)ds, 
7 6) w SW 

Ju V(pv:s)dT= J[ pvv,ds=JJp vctcos (n, z)ds, 
T U) w+ w SW 

ii x u + r x ii + G x (G- x r)+ 2 x (ii x I;) + F x 6. x S)] P dT 

+ JJJ CFX 
T 0) 

a(eldT+ JJ p(FxX)<,cos (n, z) ds, 
SW 

and therefore 

+Jo p [ij x (ij xF)l dT+ JJ, p B dT+Jl pS ct cos in, z)ds 
TV) TV) SW 

=- Pl +J/lP f dT , 
7 (t) 

Jop[F x aF]ciT + 2 Jflp@(F d-V(6 ?)I dT 

7 w T(t) 

2-21 



+j-flP@‘P> @ x6)dT+~P[&F)- f (if)] dT 
T tt) T(t) 

+~~~P(~xH)dT+~P(Fx~)r,cos (n, z)ds 
T tt) SW 

= -h +flP(fxfidT 
T 0) 

as adduced. 

If the motion of the liquid is irrotational when measured in inertial space, 
then 

=vQ -i;,xif -~xvyz-oyvxz-w,vxy, 

using (2.23) and formulae (2.39) become 

ax CP 01 dT + fl P”dT”j - (4 + 4) {P J[[x dT+ oJP*x dT”} 
T(t) T+ T w 7” 

(2.40) 

+(4Y-‘&)[P~flydT+~~P*ydT*~+(w, w.+r;i)(pmzdT+~NP*zdT*j 
T(t) 7+ T 0) 

-2LjyPflzdT-d%bx dT-$Pxfx dT*+PSSfb(&f)dT 
7 0) 7 w T(t) ax at 

% CPadT+flP*dT?+ b,w,+8.)[pf~xdT+~~PXxdT*) 
T(t) 7” TV) 

- !ti + ‘d 1 P fl y dT + J[s P” y dT+j + by 0, - &) iP Dl z dT + JflP* z dT+j 
T(t) 7” T(t) T++ 

-2i~PflxdT-P~[fydT-~~~P*fydT*+P~~&y(~)dT 
w T 0) 7” T(t) 

+i!j Padyadv=F.xt, 
T(t)ay 
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ax ~P~.bT+~P*d+~ + bx ~,-‘~,)~p~~xdT+~~p*xdT*~ 
T(t) T* 7 w 7” 

+ (‘4 “‘x + ~x)b~~,j-y dT+Jll P*Y dT*j - k’% + $1 Epfll z dT + a p* z dT*l 
7 tt) 7” 7 VI 7” 

-2hxP&b’dW’~bx dT-~~p*f,dT*+p~~~z(~)dT 
T (t) T(t) T(t) 

a,~P~~ydT+~~~p*ydT*~-a,~p~zdT+~p*zdT*j 
7 U) 7” TV) 7” 

+ bx 4 - s,[psss 
7 U) 

X Y dT+fl- P*x y dT”3 - bx WY+&,> EPJJJx z dT+ $p*x z dT* 
7* 7 0) 

+(W,W,+(j,)CP~~gdT+SSSP*y2dTQ3+(~-~)Ep~~yzdT+~~p*yzdT*} 
T(t) 7* T(t) 7” 

- by w, - L;,) cp JJ- Z2 dT+JJjk*z2dT+?+2 c;,pJJsxz dT- 2 c;, ~~,j-y”dT 

T(t) 7” 7 0) 7 (t) 

-P~~(Yfz-zfY)dT-~~p*(Yfx- Zfy)dT*+p~~~[ya&(?$)-z gy(z)]dT 
T(t) 7” T(t) 

++ psss (Y &;- z &;)dT = ~~~~~ 
7 w 

-a, {P~~~xdT+~*P*xdr’l+a,IpSSSzdT+~~pj(zdT6) 
7 w 7 (t) 

- bx w, - ~,)Ep~~?dT+~~~p* 2dT*j-( “$ ‘% + bx) b JD x y dT + JJl p’x y dT*] 
7 W 7” 7 VI 7” 

+(W”,-~)~P~~~xzdT+~~P*~zdT*~+(~~~~-Lj~)~p~~~yzdT+~~p*yzdT*~ 
7 w 7” 7 w 7” 

+(w,~,+cjl)~p~~z2dT+~~p*z2dT)t3+2Ljxp~~xydT-2L;)yp~~~z2dT 
7 @) 7” 7 V) 7 W 

-pfl.bfx-xfx)dT-fllp*(zf,-xf,)dT*+pjjjb 
TV) 7” T tt) 

&,($f) - x~z(~~l dT 
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+tPfl(z&;-x.$? dT = Lex% , 
T 0) 

ayfPflxdT+[~~p+xdT*3-ax cpl,ydT+flJp*ydT*] 
70) 7* 7 w 7” 

+ (w,w,+Li),)(PSSrX2dT+~~P*XadTQ3+(3- @)[p~~xydT+[~~p*xydT*] 
7 (t) 7 7 ua 7* 

+ by w, - &) fp JJs x z dT + JDp*x z dT*] - (w, wy - 3x ) EPJJJf dT + JJ p” y” dT*} 
7 (t) 7” T 0) 7” 

y ‘f;’ dT = Lext 7. 3 

-cj,yz-3,xz- &xy+ii!+~+$+-+(wx:)Z = C(t), PCT(t), 

aQ -- 
at 

Lj,yz-cjxz-3, xy+gF+n+*&.Q(ijxF)2 = 0, PCS(t), z=r, 

Acp = 0 PE T(t) 

2 [w, y cos (n, z> + 0, z cos (n, x) + W, x cm (n, y)l , PC c(t) , 

2 [ox y cos (n, z) + WY z cos (n, x) + w, x co9 (n, y)l+ Ct co8 (n, 2) , 

PC S(t) . 

Thus, with the external forces and moments, certain initial conditions and 
the geometry of the vessel given, the motion of the system can, in principle, 
be determined from (2.40). 
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PLANAR EQUATIONS FOR THE MOTION OF 
A LIQUID PROPELLANT LAUNCH VEHICLE 

Consider the planar motion of the launch vehicle illustrated in Figure 2. The 
vehicle consists of an engine, a main body which is assumed to be rigid and a rigid 
tank partly filled with a frictionless liquid, For simplicity, the tank is assumed to 
be a prismatic cylinder, Figure 3. 

To describe the motion of the system take three Cartesian frames of reference 
o’ x’ y ’ z’ fixed relatively to the vehicle at a distance 1 below the tlcappedll free 
surface, o x y z fixed relatively to the container and oe x, ysze fixed relatively to 
the swivelling engine. Reference o x y z is oriented in such a manner that o z is 
measured positively along the outward directed normal to the undisturbed free 
surface. Thus the free surface, denoted by S(t), coincides with plane x o y (the 
plane z = 0) when the vehicle and liquid are at rest. 

Let 

z = c (x9 Y, t) 

be the equation of S(t) when it is displaced. Denote by C (t) = Cl(t) + Ca (t) the 
wetted surface of the vessel, and by 7 (t) the variable volume enclosed by S(t) and 
C (t) . Let C , 7 and S represent the values of c (t), 7 (t) and S(t) in the undisturbed 
position. In addition let C be the boundary curve of C1 (t). All surfaces are 
presumed to be piecewise smooth. 

Coordinate systems o x y z and o. x. ye z, are related to o’ x’ y ’ z’ as follows: 

Z’ =z+l ( z’=- 11- (z.cos B +y,sin8) , 

Y’=Y 9 y’=ys cos B- zesin fl , 

X’ =x , X’ = x. 

Suppose that at time t the vehicle is coincident with inertial space and that it 
is moving relatively to inertial space with motion described by an observer in 
inertial space as a velocity fi of 0’ and an angular velocity i;, . Then the position 
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Figure 2. Launch vehicle experiencing planar motion. 
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UNDISTURBED 
DISTURBED 

Figure 3. Prismatic cylindrical propellant tank, 
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vector F’ of a particular point P onthe vehicle at time t is the same for an observer 
moving with the vehicle as it is for an observer in inertial space. 

The point P, if rigidly attached to the vehicle, has the velocity 

v = CO,(u,~- z/6), (u,t+y’i)l . 

Denote by 9 (P, t), 7 (P, t) the velocities of the liquid particle PC 7 (t) at time t 
as estimated by observers in inertial space and o x y z respectively. Then 

q = 10, by’- (z+l)d, h,‘+y6)l+F, 

in which q, V are referred to moving reference o x y z. 

The velocity of a generic mass point on the engine is, referring to Figure 2, 

v = co, hy’+ (i- s, ( z, cosB+y.sin8)+1181, LuZl-(6-S)(z.sinj3-y. cosj3)33. 

The total kinetic energy of the vehicle is therefore 

T =T main body +T engine + Tliquid , 

where 

Tmain body - -* (U~‘+U~‘)~~~~~+~~~~~(Y’~+Z’~) dm +i{u,/fl’y’dm 
r* 7” r* 

(3.1) 

+e Ew JJJ-y. dm+ uy’ JJ.(ll + z,) dm I+ h STJ[(J% + z?)dm 
7, 7, 7, 

-EJJJ( yz + z:) dm - &uy/ cl1 e)cosp-u,/sin81SSSz,dm 
7, 7, 

+Ciuy’+l~ e)sin13+u,‘cosBl~~y,dm}+ifEC~Y/+11 iJ)(cosfl-l) 

7, 

- uz /sin131sfsze dm+C(u, ‘+lli)sinB+u,‘(cosfl- l)l~~y, dm}, 
7, 7. 
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TliqGd=h ($ +$‘)JDP dr+Q @fl fIf+ (Z +lpIpdT +Q ap PdT 
-7. (t) T w 7 0) 

+eEu,‘~~ypdT-u,‘JJS(l+z)pdT+u,‘~~~~dT 
7 W 7 0) 7 w 

+ uz ’ ,khz F+~~[[Cyv.- (z+l)vYlpdT . 
7 (t) 7 0) 

Assume the liquid to be homogeneous and incompressible throughout the 
motion. Neglect interfacial tension forces and capillary contact effects be’tween 
liquid and tank walls. Moreover, assume that the liquid is not draining from the 
tank. Then, with the absolute velocity of liquid particles irrotational, we have 

$($)+u,’ Fu ,-Wz =L,t,~+p~~[ygz’- (l+z)g,‘ldT 
z Y’ T U) 

+ JTJ-( Y’ fzz’ - z’gy~)+JJJCyecosi- z.sinB)g,/ 

7* 7, 

+(l~+z,cosB+y,sinB)gy~ldm , 

+Q B’ 

z-6 y(l+z)+a,y+a,(z+1)+0+&v”-* @Cy’+(z+1)21=0, PCS(t), z=c, 

V=Vq+(O, 0, -2y b), PcT(t), 

Aq =0, PET(t) 
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$$= I 28ycos(n,z),PCC1(t),Ca(t), 

26ycos(n, z)+~,cos(n, z), PCS(t), 

in which 

if= (0, &‘, gz’) 

is the vector’ of body forces per unit mass, and 

QB is the generalized force which, in general, is associated with the spring 
moment per unit angle of the hinge when locked, with the damping moment of the 
hinge, with the engine actuator moment, and with the engine actuator position 
required by the autopilot. 

Formulae (3.21,s.~) express the dynamic equilibrium of the complete system. 
Formula (3.24) is the Euler-Lagrange equation which describes the motion of the 
engine. Formula (3.25) is the unsteady pressure equation which is obtained 
from a quadrature of the Euler-Lagrange equation for motion of the liquid subject 
to the above assumptions. Formula (3.26) expresses the constancy of pressure 
at the free surface of the liquid. Formula (3. 27) is a corollary of the assumption 
of absolute irrotational motion. 

Using (3.1, 2), we get 

ayfCus drn+flJ dm+p ~dd-*t~~~y’dm+~~~y~dm+P~~~ydT3 (3.3) 
7” 7, T U) 7” 7, T U) 

-6Esfiz’dm +os (z,+ll) 
7* 7, 

dm+pSSS(z+l)dT}-~~gy’mn-p~~Sg,‘dm 
7 V) 7 U) 
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+6tmY’dm.+JJJYe dm +P~ydT)-~~g~fdm-pSl[rg,‘dT-~g,‘dm 
7* 7, w 7” w 7. 

-~2~P~~YdT+P~~~~z(~)dT+~p~~~~ dT+[~sinfl+2~~cosfi 
w T(t) TV) 

- (i” + j2) cos @- fj2 - i sinBI[J Z* dm+C8(cosB-l)-2188’sinB 

+(6a+ja)sinB-jcos81Jfly. dm +211 i”Jo dm = F.xt *, , 
7, 70 

az’{sDY’ dm +nlYe dm +PlJydTj- ay’ {DJz’ dm +fl(ll+ z,) dm 
7” 7, T(t) 7” 7. 

‘pSSS(l+z)dT~+~E~~(y’“+z’“) dm+~~~[$+(ll+z,)a] dm 
70) 7” 7. 

+PSSS~+(1+z)a]dT3-SSS(y’g:-z’g,)dT-pSfS[yg,’-(1+z)g,‘]dT 
T(t) 7” 7 0) 

-SST [(YeCOS 8- ZO sin8) gZ’+ (II+ z,cos 4 +ye sinfl)g,‘]b 
7, . 

-2pE,S~yadT+p~~[~~~(~)-(z+l)~(~)]dT+kp~~[y~~ 
w T(t) Y w 

- (z + 1) $! 1 dT - 3 JJ(yf + zt) dm + Cay’ (cos 8+ 1) - azf sin fl 

Te 

+ 11 c2 ii (cos /3 - 1) - 2 i e sin B + s2 sin B - i cos 813 J[J ze dm 
7, 

+ {a,fsinB+ a,f(cos B - l)+ll [2i)sinfl+2j8cosB-jacosfi 

- S sin 813 JJJ ye dm + 2 a,’ 4 J-ss dm = LIxtxf , 
7. Tr 

b[ls(yt +z?) dm- i JJJ($+zt) dm+[a,‘sinB-ay’cos/3-lIi COB@ 
7. TO 
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-~~(gr~sinB-gy/cos/3)z. dm+~~(g,~cos~+g,fsin~)y.dm= QB , 
% 7. 

p+ 
P 

9 - i y (I+ z)+a,f y at +a,/(z+l)+$ v2 +n -9 e”[y”+ (l+zj2] =C(t), PCT(t), 

2-B y(l+z)+a,‘y+a,~(l+z)+* v~+SI-$~~~C~~+O+~)~I=O, PCS(t), z=C , 

ii = vcp+(o, 0, - 2y&, PCT(t) , 

A9 = 0, PET(t) , 

$g = 0, PC&(t) , 

acp 3 = 2 6 y, PC E,(t), z = -h , an = az 

2 = (2by+P,) cos (n, z) , PC S(t) 

g = (0, EC,‘, Ia’) 3 

g =-on, 

ayf = I.+’ - i ~~1 , a,’ = U,l + e uY’ . 

We now make the following simplifications and identifications: 

(1) The specific body force are independent of position, 

g = const; 

(2) Origin of reference system o ’ x’ y ’ z ’ is at center of mass of vehicle when 
engine is *‘locked-out” and liquid “frozen” solid, 

sly’dm+Sflye dm+p DydT = 0 , 
7” 7.3 7 

SST z’dm+ o(11 +z.hm+P~jh+z)dT = 0 ; 
7” 7. 7 

(3) Engine is symmetrical about its line of centers, 

IJJ yedm=O; 
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(4) Origin of coordinate system oxyz is such that 

Jfl ydT=fldxdyl:h ydz=hfly&dy=O, 
7 8 8 

the tank is symmetrical about longitudinal axia of vehicle; 

(5) Total moment of inertia of system about axis o ’ x’ is 

l 1 
IO/X’ = IO:“.’ + IO’S’ + I&’ ( 

eb 
Io’x’ = sfl(yfa+ z’“) dm , 

7” 

IO’? = JJ CJt + (11 + ZeFldm , 
Te 

IO'S' ’ =JD[$+(l+zp]dT; 
7 

(6) Total mass of system is 

M =Mlb+Me+Ml , 

M,t,= Ju dm , 
7” 

M, =fl dm , 
7. 

Ll = P fll dT ; 
7 

(7) Moment of inertia of engine about axis oe X~ is 

10:~~ =so <y$ + z?)dm ; 
7. 

(8) First moment of mass of engine about axis oaye is 

l 

SO& - &uY zadm ; 

Te 
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(9) Second moment of mass oi liquid about axis oz is 

1 
10s = PflfdT ; 

7 

(10) Various volume integrals associated with liquid are evaluated as 

Pad7 = Pfld~+P~,bd=b, 
T(t) 7 S 

Ps~YdT=P~ydT+PJSyrdxdY, 
w 7 S 

P fl’s(l + z) dT=p Jj?l +z)dT+pJ[(<2/2+11:)dxdy, 
TV) 7 S 

P JD [y” + (1 + z)“] dT= p flj- [y” + (1 +z~]dT+/‘fl[12+y%+1~+&3] dxdy; 
w 7 S 

(11) Potential nis 

a= - is,’ y- g,‘(z+l) . 

With these simplifications and definitions, formulae (3.3) may be written as 
follows: 

Component of force equation along axis 0 ’ y ’ 

M (a,./- gy/) + P(a,‘- &‘),j-jbW4’fi fl(lc+?/2)dxdy-P e2JJyc dxdy 
S S S 

(3.4) 

+(62+fi2)sinp-Bcosfi]G;. +2116 M, = Fext ’ Y 

Component of force equation along axis 0 ’ z ’ 

(3.5) 
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- (@ + ia) cos 6 - 8 - j sin fl I s+, + 2 li Me $ = Fat,/ 

Moment equation about axis o’ x’ 

(I ofxf - 2 Id,) ii + p (a,‘- g,‘) ss y c c-lx dy- p (9’ - 8,‘) 0 (1 c + c”/2) clx dy 
S S 

+ p ij ~~[(la-JP)~+~a+~/31~dJy+P~~~[y~(~)-(1+Z)~y(~)]dT 
S w 

+~pJSS[y~~-(l+z)~~]dT-I,:.~ ;+[(a,‘-g,‘)(cosfi+l) 

T(t) 
(3 l 6) 

- (aZf- gZ’)sin8+liC2~(cosB-1)-2~~sin~+~asin~ 

- i cos 81 1 Sc;ye + 2 11 tar’- gYf) M, = Lbrt ’ x 

Engine equation 

I oIx~(~-~)+ [:(a,‘-gz’)sin,S- (a,‘-gyf)cosfi-lI G COSTS 

+11 +sinfil~ 
byb 

= Q/j 

Constancy of pressure at free surface 

~-ijy(l+~)+(ayf-gyf)y+(a,~-g,f)(I+~)+~v2 at (3.3) 

(3 - 7) 

- s c y2+ (1 + [)"I t? = 0 , z = [ 

(3.9) 

Kinematics of liquid 
V= VQ+b, 0, - 2 6 y> , PET(t) 

AQ = 0 , PrT(t) 

29 
an 

= 0, P<&(t) 

2 = %=2dy, Prc(t), z=-h, 

* = (2 i y + <,> co6 (n, z), PC S(t) . 
an 

ss ct 
The solution to the NemHiM problem (3.9), subject to the restriction 

dx dy = 0, may be taken in the form of a series 
S 
Q(x,y,z,t)=i&(t) coshki(z +h)+ x(t) sinhki z)Qi \x, y)+&(t) (3.10) 



This function is harmonic as indicated by (3.4)) and satisfies (3.9,) if the 
infinitelymanyvsluese(i=l, 2, . ..) are the values of kz (eigenvalues) for 
which the two-dimensional scalar Helmholtz equation 

AQ++Q=O, PCS, (3.11) 

has a non-zero solution satisfying 

2 = 0, PE Cl (or C) . (3.12) 

Functions Qi (i = 1, 2, . . .) are the corresponding solutions (eigenfunctions) 
of (3.11). 

We point out, without proof, several important properties of the system of 
functions Qi and the numbers @: 

(1) Of the infinite number of numbers k? , all are real and positive; 

(2) The set of functions cp, is orthogonal 

(Qi, Qib s,j-Qi Q+dY = I 0,i #j 

S 11 Qi1!2 , i ? j ’ 
(3.13) 

and can be normalized; 

(3) Any function. ~(x, y) which has continuous second-order derivatives in 
and on the boundary of S and which is orthogonal to a constant: 

(CL, 1) = JJ cl(x, y) dx dy = 0 , 

and which satisfies the boundary conditions, may be expressed as a 
uniformly convergent series of eigen functions 

p (x, y) = 5 ci Qi (x, Y) ; 
1 

(3.14) 

(4) If function @ which is continuously twice-differentiable satisfies the 
condition (3.12), then the series (3.14)not only converges uniformly to 
p, but the series obtained from it by termwise differentiation also 
converges in the mean to the corresponding derivative of p; 

(5) In addition to the condition for orthogonality, written above, the 
following equations hold: 
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B 
I 

0, i +s 
V(p,VQ, dxdy = 

k:. IIcpill’, i=j’ 
(3.15) 

We are now in a position to expand 2 y 6and c (x, y, t) as series of the form 

2iy = 2 fi c E vi (tj Qi (x, Y) + rlo (t)] 9 (3.16) 
1 

c (x, y, t) = F 61 (t) Qi (x, y) + to (t) l 

Such expansions are possible, since for a fixed value of t functions 2 i ( y - qo) 
and < (x, y, t> - to (t) are developable in series of the form (3.14). The 
coefficients of these series depend, in general, on t. Choosing 70 and to so that 
y - r]c and c - e. are orthogonal to a constant (unity), we get 

rli (t) = (y, , 
11 Ql11= 

r)o w = kid = 0 , (y, 1) = 0 , 
A 

and 

51 tt) = ($g’ , 
2 1 

(3.17) 

(3.18) 

50 (t) = (iJLr) 
A ’ 

respectively, using the condition for orthogonality (3.13). Here A is the area of 
the cross section of the cylinder. Now since 

s = 0, PrC, 

the series obtained from (3.162) by termwise differentiation converges in the 
mean to the corresponding derivative of c. Note that this implies a 90’ contact 
angle. For contact angles other than this such an expansion as (3.161) is still 
possible with, of course, certain modifications. 

For (3.5) to satisfy the boundary condition (3.94). it is necessary that 

Yl (t) = 2 6 (Y, Qi) . (3.19) 
ki ~IQi1~2 cash ki h 

3 -14 



To satisfy the boundary condition (3.9s) it is necessary for 

“c Cki <pi sinhki (C +h)-VQi VT co&k, (C, +h)j al(t) 
1 

+ ; Cki QlcoshkiC - V Ql V c sinh kl c 1 X (t) = + 2 6 y + c t 

= E ?‘l (t) kicoshki h Qi +Ct 
1 

However 

Qi = kf -.!m A$J~ = -p l v Oh) 9 
1 

so that this expression can be written, on application of a known vector identity, 
in the form 

sinh ki (< + h) 
: m(t)vC ki vQ,j+ 5 Yi(t)vf cash kf p- cash ki h V Qi 1 (3.20) 
1 1 ki 

= - <t = - ” i, tt) Qi - io (t) , 

using (3.18). Multiplying both sides of this equality by QJ and integrating over S, 
we get 

- (IQi(12 & = E 1 czJ (t) fsQ, VfSinhk:‘(~+h)VQJ~dxdy 
S 

+ G yJ(t) D Qi v (coshk$J-coshklh vQJ jdxdy 
1 S 

but 

Q, v {sinhk, (C+h) v QJ) =v {Q~ sinhkj (c +h) VQJ 3 
kJ kJ 

_ sinhkj (C+h) 
kJ 

V Qi v QJ 9 

<pi v { cash k-! c - ‘Osh k3 h v QJ ] = v IQ1 coshk,[-coshk,h 
kJ kJ 

V Q,] 

_ cash k, C - cash k, h 
kJ 

V Q1 VQJ , 
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and moreover 

ss c 
v Qi sinhkj (c +h) 

kJ 
VQJI &dY =f’P! 

sinhk,(t+h) $fJ 

kJ 
an dL=O , 

S C 

ss c 
v Ql cash k, 5 - cash k, h 

VQJI dxdy =O 9 
S kJ 

in accordance with the divergence theorem and boundary condition (3.12). 
Therefore, it follows 

where 

Cl’ = ,&la s 

J-J’ sinhk, (c+h) 
kJ 

V QJ V Ql dx dy , 

(3.21) 

(3.22) 

E 
(Y, QJ ) 

” = 11 iill 1 kJ QJ a 
SJ 

cash k, c - cash kJ h 

cash k, h s kJ 
VQJ VQl tidy . 

If we integrate both sides of (320) over S we obtain the constraint expressing the 
constancy of volume. To be sure 

B ’ ’ 
sinh ki (c + h) 

V Qi 3 dx dy =s 
sinhki (C+h) aQi a dL=O, 

n 
S 

ki 
C 

ki 

ss v 1 
cash ki p - cash ki h VQ,] tidy =s cash ki c - cash ki h 31 d ,L _ o 

S 
kl 

C ki an -’ 

and 

” iin Qi tidy +ioss dxdy =A to, 
S S 

so that 

Af,,=O . 
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But the volume is given by 

T tt) = fl dx dy j+_‘, d z = h fl dx dy + g < dxdy =To+A[o, 
S S S 

and 

+w =O=AiO 

as adduced. 3 

Substituting the expansions for Q and c in expression (3. 8), multiplying the 
resulting equation by Ql and integrating over S, we get, after considerable 
manipulation and rearranging indices, 

(a,’ - gx’)llQ~112 51 + F dtJ 1s Qi QJ cash k, (c+ h) dx dy + (a,’ - gY%y, Q,) (3.23) 

S 

+SE go, alj-j-Ql [VQ, VQ1coshkJ(c+h)coshkJ(c+h)+kJklQJQl sinhkJ(c+h) ’ 
11 S 

sinhkl (c+h)ldxdy+ 12°C 
(Y, QJ) 

1 k, hII 2coshkJh i Q~QJ SinhkJ C tidy 

(Y, QJ) 
- 5 6~ .~SY* QJ do dy - b (y,Qf)je+ 2 I$! ” ” a1 k, 11~J112 

l s 

cash k, h ’ 

ssQi[VQJVQlSinhkJ Ccoshkl(<+h)+kJklQJQlcosnkJE sinhkl(<+h)ldxdy 
S 

k?, Qd 
+ i!” ” aJ kl(lQl\12coshklh i@ [vQJvQlcoshkJ (C+h)sinhklC 

+ k, kl QJQMinhkJ(~+h)coshk~1:ldxdy-3;o-JkJ~~yQ~QJ . 
S 

sinhkJ(c+h)dxdy36 -h @{~sQ~[(l+&3y?dxdy 
S 

(Y, QJ) (Y, QI > 
- 4 ” ” kJ icl n’Q,\l 2 11 Qllt 2cosh k, h cash kl h ;J Ql ['QJ vQl si* kJ t sinh kl c 

+ kJ kl QJ Ql cash kJ c cash kl< 1 dx dy + 8 E (Y, QJ) JJQ~ QJ cash kJ c dx dyI = 0 
1 I)QJ112COSh k, h s 

3See notes. 
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Likewise, substituting the expansions for @ and c in expression (3.8) and 
integrating the resulting equation over S, we obtain 

A C&O+ (a,‘- g,‘)(l + to)] +” iui jj%‘i cash ki (c+ h) dx dy (3.24) 
S 

+s 9 ~cur(YIJSIVWV~~coshkl(r+h)coshkl (r+h)+krkJcPIcPJstnhki(r+h)* 
S 

sinhkj (c+h) dxdy+ 12E 
(Y, cpi) 

Dcplsinhki c dxdy-1A 
1 ki I(vi\hmhki h s 

(Y, 91) 
- g (y,d511i+2#~+ kl,,cpi,,~Coshkfh ~CW(o,coshk, (1:+hhhki C 

1 

(Y,cp 1 +klklWLPIsinhk,(6+h)coshkrrldxdy+a~~g k,j,41,acAshk 
J 

h * 

JJ[Vcp,VcpJcoshki (C+h)sinhkJ~+krkJcp!cpJsinhki(~+h)coshkJ~]dxdy 
S 

(Y, CA:) (Y, VJ) 
- 4 F F ki k, ((cp#jqJ1!2 cash ki h cash k, h s [j- hA “QJ sinh ki C sinh k, C 

+klkJqicPjcoshki ~coshkJldxdyt8~ (Y, a) 
1 II a II” 

j&4 cash ki r: dx dyb? = 0. 
cash ki h s 

Introducing the expansion for cp into (3.4, 5, 6) gives 

M cay/- gyf)+da,‘- gyl)D<dxdy-P eEJJ(lC+C%)dxdy (3.25) 
S S 

(3.26) 
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(Y, Qi) 
-2; ki j!Q#%osh ki h s 

fl(sinhklc+sinhkrh)cpldxdy-p$fl(lc+e/2)dxdy 
S 

+p;&n[coshk, (c+h)- l]Q&cdy+tP~$~d~- [(i-@sinB 
S w 

. . . 
- (e- phos B - @I so’ aYe + 2 11 M. @ = F.zt / , z 

fb:'- 
(Y, Qi) 

2bi +~[~[(l’-~~)C+C~+03]dxd~+2P~ ki,,cpl,,acoshk h * (3.27) 
1 

IJY I(l+C)V[.Cos!~k’C VQi]+ki(l-h)acoshkih+2(sinhki c 
S 

+ sinhkf h) Qi3bdyjij +~(a~/- g,‘)JJyC dx dy - o(a,/- g,~)~~(l~+ p/2) dxdy 
S S 

+P F &JJy [(l+S)vcsinh;:(C+h) VQ,]+2[coshk&‘+h)- l]Q&xdy 
S 

Id7 - bzx, s + {(a,/- gyl) (cos /3+ 1) 

- (a,/- g,/) sin fi + 11 [2 6 (co6 /I - 1) - 2 fib sin fi + j” sin j3 - t; co; 81) gO:yc 

+211byJ-gy~)M, =Lextx, , 

respectively. 

Formulae (3.7, 91, 10, 19, 21, 22, 23, 24, 25, 26, 27) together with the 
appropriate control system, flight path data and aerodynamic data are sufficient 
to describe the motion of the system. The dependent variables occurring in these 
expressions are 51, 6, uy , u, and 6. Note that the body rates uy , u, ,d are not 
generalized coordinates; therefore, to determine the true orientation of the vehicle, 
it is necessary to express these rates in terms of three independent coordinates 
such as Euler angles. However, stability analyses of closed loop vehicle attitude 
control systems treat vehicle rigid body motions as a summation of perturbations 
from a reference motion and motions in which vehicle body axes remain coincident 
with reference axes. Moreover, the perturbation quantities are presumed to be 
infinitesimals so that products of infinitesimals and their derivatives can be 
neglected. In this case the perturbation equations, when referred to vehicle fixed 
axes, can be integrated to yield the orientation of the perturbed state with respect 
to the reference state. 
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The perturbation equations of motion are obtained by taking the vectorial 
difference between the perturbed equations of motion and reference equations 
of motion. The resulting expressions are equated to the appropriate perturbed 
external forces and control system forces. 
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PERTURBATION EQUATIONS FOR THE PLANAR MOTION OF A 
LIQUID PROPELLANT LAUNCH VEHICLE 

For simplicity suppose the vehicle to be moving in the direction of constant 
acceleration 

(0, 0, a,4 = (0, 0, a,) , 

under the action of the force field 

(0, 0, g,‘) = (0, 0, -fd , 

the only external force being the thrust T directed along the longitudinal axis of the 
missile (Fig. 4). The free surface of the liquid forms a plane perpendicular to 
a,/, i.e., c = 0, and the engine is aligned with the longitudinal axis of the vehicle. 
( fi = 0). We shall call this the reference state. 

A small disturbance from the reference state is effected by letting 

g’ = (a,$ + 6%’ = a, sin 0 + i&f , (4.1) 

a,’ = (a,/), + 6a,’ = a, cos 8 + baz’ , 

gY ’ = -g, sin 0 , 

gz ’ = -g, co9 0 , 

in formulae ( 3.7, 23, 24, 25, 26, 27)) and considering 6a,l, 6aZ’ , 8 , B, c , . . . . 
initially infinitesimal so that when product terms are neglected the resulting 
equations become linear. These equations are the perturbed equations of motion. 

To obtain the perturbation equations, project the reference state equation of 
motion onto the instantaneous position of the body axes and subtract them from the 
perturbed equations of motion. 
axis 0’ y’ 

Thus, we get perturbation force equation along 

(4.2) 
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Figure 4. Yaw plane perturbation model for vehicle. 
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Perturbation force equation along suiis o ’ z’ 

M 6azf = 6F,, I , x (4.3) 

Perturbation moment equation about axis o ’ x’ 

ib'x' -4b~+8p~CoShk~h-1 (y,cpl)a ~i+~;~g(coshkih-l)- 
1 ki sinh ki h I\Q# 

ll(Y,Ql >ii 
1 ki sinh ki h 

+ p (a, + gr) F (y, Qi> Ii + 2 @& + 4 M,) 6%’ - (tiJ, + 11 SO;,) 3 (4.4) 

= 6L.x, 
X 

’ , 

Perturbation engine equation 

Constancy of pressure at liquid free surface 

PiiQd2 (4.5) k 
1 
tanh k 

1 
h ii + PllcPll!a (a, + g,) 5i+ PC: (i:ihkkfhh - l)- 11 (y, cpi)i 

1 1 

+ P(Y, Qi) bay/ = 0 , 

in which 6’F,%/ , 6Fext / , 6L.xtx~ , Qg 2 are perturbation forces and moments. 

Also 

ii 
” = ki sinh ki h 

+26 (Y, Qi) (cash kl h - 1) . 
ki (j@\I’cosh ki h sinh ki h 

Denote by Y, Z the components of the displacement vector from the origin 
of the reference state to that of the perturbed state, measured along the 
instantaneous position of the body axes; then, to the same order of smallness, 
we have 

(4.7) 

With the definitions given previously, we see that the action of the liquid in 
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formulae (4.2, 3, 4) is represented by the forces and moment 

-6F;t =MI%+P ,rJy&dxdy 
S 

(4.3) 

. . 
-6F:f =MlZ 

in which 

r#J*= Q"- y(l+d , (4.9) 

o3 (Y, Qi) 
‘* = 2 f; kil(Qi1(2 cash ki h 

c 
cash ki h - 1 cpl cash ki (z + h) + cpi sinh ki z} , 
sinh ki h 

and 4*, cp” satisfy 

A@” = AQ* = 0, PC? 

a@* = 
an 

y cos (n, z>- (1 + z> cos (n, Y), PC G, S, 

(4.10) 

ff+ = 2 y cos (n, z) , PC C 9 S . 

From (2.34) et. seq., we see that @*, Q*are modified Stokes potentials which 
are determined solely from the geometry of the vessel, the free surface being 
“capped”. 

With the introduction of potential 9, where 

A@= 0 ,PCT, (4.11) 

I!&=0 ,PcC, 
{ an 1; , PC s , 
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formula (4.6) may be written as 

pz+p &b*+pyii+P(ar+gr)C =O s (4.12) 

coshk,(z+h) 
9 = F ii tt) ki si& k h <pi * 1 

Y 

Thus, it follows from formulae (4.8, 9, 10, 11, 12) that the action of the liquid 
can be determined also from a computation of forces and moment (along o ‘y ’ , 
o ‘z ’ and about o ‘x’ respectively) resulting from the solution of the linear problem 
shown in Fig. 5, Y, Z, 8, c being taken as infinitesimals. 

Formula (4.9e) represents the moment of inertia of the “capped” liquid about 
the center of rotation, and obviously does not equal the moment of inertia of the 
“frozen” liquid about that point. Indeed, if we denote by I& the moment of inertia 
of thefTcapped*’ liquid about 0’, and by gf that of the “frozen” liquid about the’same 
point, then 

E=l- 
$j-j-j-$dT+z 2 ‘Oshkih- 1 (3% Qi)" 

f b’ 7 b’I kisinhkih II’ 

x’=pJJ[J”+ (l+z)“]dT , 
7 

a ratio which can be shown to be less than unity. In particular, 

(4.13) 

(4.14) 

a,=PJJj- c$+ (z+ h/2)21dT , 
7 

at the center of gravity of the liquid (1 = h/2) . Moreover, 

@‘=I$ +M1 (1 - h/2)a , 

%‘=%‘+ Ml (1 - h/2)a , 

(4.15) 

The behavior of (4.13) may be illustrated effectively by considering a 
rectangular tank such as shown in Fig. 6. We have, for this example, 
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Figure 5. Linear model for simulating action of liquid in perturbation equations. 
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7 / Jb 
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Figure 6. Liquid filled rectangular tank. 
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“=I _ (l/3) (64/n5) (a/h) 
x3’ {(l/a)” - (l/a) (h/a) + 1/3 (h/a)2+ l/12 3 + c( l/a)“- (l/a)( h/a) + 113 ( h/a)2+ l/12 3 ’ 

c 

1,3,.. 
0 /i5 tanh i rh/2a 1 . (4.16) 

This ratio is plotted in Fig. 7 as a function of l/h with a/h as parameter. Note 
that for any given a/h the %apped” moment of inertia of the liquid is less for 
rotation about the center of gravity of the liquid (1 = h/2) than for any other position. 
Similar results may be obtained for other configurations. 

To put formulae (4.8, 12) into symmetrical form, we introduce the 
transformation 

(Y, Q3 

getting 

* (y Ql)” - 6Fif = Mu 6ayt+ p CL 
1 ((Qll12 q1 a 

- 6F4’ = Ml 6a,t , 

- &:‘=&J++p E [ 2 (cash ki h- 1) 
- 1 ki sinh ki h 

l] (Y, Qi)” ;il 
11 Qi 11 2 

(4.17) 

(4.18) 

P (Y, QlF 
kl II ~111 2 tanh kl h 

ii fp b,+d (y7 Qi)2 qi + p [ 2 (cash ki h - 1) 

II cpl II 2 

_ ,](Y’Ql)” lj 
ki sinh ki h II cpi Ii 2 

tp (yyQi)” 6ayf = 0 
11 Qi 11” 
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Figure 7. Ratio of %appedyT moment of inertia to “frozen” moment of inertia for rectangular liquid filled tank. 
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MECHANICAL ANALOG FOR REPRESENTING THE ACTION OF 
THE LIQUID IN THE PERTURBATION EQUATIONS OF MOTION 

We enquire how to duplicate the action of the liquid, represented by 
formulae (4.18)) with a mechanical system. Accordingly, consider the system of 
pendula attached to the vehicle shown in Fig. 8, where 

MPl - Mass of i th pendulum, 

Ll - Distance from center of rotation to hinge point 
of i th pendulum, 

LPl - Length of i th pendulum arm, 

b - Rigid moment of inertia, 

MO - Rigid mass, 

Lo - Distance from center of rotation to point at 
which & is situated. 

The velocity of the mass of the i th pendulum is simply 

$1 =C~,[(UY’-L~~~)+(~+;~~)L~~COS~~I,CU,’+L,~(~+;~~)S~U~~]~ , (5.1) 

and that of mass MO is 

(5.2) 

(5.3) 

70 = c 0, (uy’- Lo 6)) l&f3 . 
It follows that the kinetic energy of the mechanical system is 

T,, = 8 ( uy12+ u,” )iMa+:MPll++ 6°C b+ MoLo2+ +,&.1- Lpi 1” 3 

- 6 uy’ CMoLo + F Mpl (La1 - Lpi) I+ ii! f M,iL,? ;li”+ 6 F MplL,: ;Ii 

N 
+ C M,lL,i qi {u,‘sin gi + (uY/- L,l 6) cos qi] 

1 
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+ 6 3 M,,L,i Cu,‘sin gi + (I+‘- L,i 6) (COB qi- 1) I . 
1 

The equations of motion may be obtained in manner similar to (3.2), 

&(s )+,=F.+- 
Y’ 

~~~Jdm-,~g,J~-gyJ~Mo+~M,ll , z 7* 7, 1 

$ (2,) + 45 = FmZ/ - br[ g,‘dm - g[ g,‘dm - g,’ I&+ F M,~] , 
Y’ 7” e 

(5.4) 

& (~)+uy’~,-u,‘~,=L..,x’-~~~(Y’g,l- z’gy,)dm 
7, Y 

- Jss [(ye cos B - z. sin fi) g,‘+ (11 + zO cos fi + yesin B)g,‘ldm + M.oLo g,’ 
76 
N 

- F M,l cg,’ L,i sin qi - g,’ (L,i - L,f cos qi)j , 

&(p$ =- fl~(gz’sinfi-gy’cos~)z. dm+~~~(g,‘cos~+g,‘sin~)y.dm+&~, 
Te 70 

J&($?&)-~=- M,iL,i (g,‘cos qi + is’sin si) , 

where 

T = Tmb+T.+ T,, . 

Tmb and T, are given in (3.ll)and (3.12) . 

Repeating the same simplifications and arguments used to obtain the 
perturbation equations for the motion of the liquid propellant vehicle, (5.4) gives, 
after considerable work, 

(M,b + Me) 6+‘+ 2 (SoIye + 11 M,)i - Sozy, s= 6Fcxty’ - {[MO + g MPi] hay’ (5.5) 
1 

b&b + M. > 6az’ = 6F,, Z’ - {[Mo+~MPllba,‘l , 
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%r Lpi (Lpi - Li) = PI: 2 (cogh ki h- 1) 

- 
1, (Ys cpl)a 

k, sinh ki h IIdla ’ 

b+M,ba++ (Li- L,Ja = @ . 

Relations (5.7) contain six unknowns MPi, Lpi, L,i , Lo , MO , b . One more equation 
is needed to make the system determinate, namely, the first moment of mass about 
the center of rotation, 

MC&+; M,i hi - Lpi) = MI (1 - h/2) . 

we get 

L,l = 
1 

ki tanh ki h ’ 

(5.8) 

(5.9) 

solving (5 .7, 8) simultaneously, 

MPI = P ‘ii TJ2 ki tanh kl h , 
1 

Li = 
1 

ki tanh ki h 
+ [l- 

B(cosh kl h-l) 3 
ki sinh ki h ’ 

N (Y, (PA2 
MO =Ml - pf (I(42 ki tanh kl h , 

Lo=M,(l-h,2)+p~~[~‘~~~~i~-1’ - 11 ki tanh kl h , 
1 1 1 

N Gl)” 
M1 -p: Il(Pil12 

ki tanh ki h 

(Y, d2 El _ 
b =W- P C llcp,lla 

2 (coshkih- 1) 
ki sinh ki h 

I a ki tanh ki h 

- {M1(l - h/2) + p I+$ [2;c;;;hk;hh- ‘) - 11 kitanhkihj2 , 
i 1 1 

MI _ J, c” (Y, d2 
1 IbAIl 

ki tanh ki h 

in which 
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- (a, + g,)f%>,@ = GL,+'- [Lb+ M& 

+ ; M,i (L,i - Lpi)'1 6 + i! MpiLpi (Lpi - L,i) 4!+ (a, + 8,) g MPlh d , 
1 1 1 

M,t L,? 61 + (a, + 8,) M,i Lpi qi + M,i Lpi (Lpi - L,i) 6 

+ M,iL,i 6aY’ = 0 , 
. . I 

bb, fl+(a,+g,)f%>, 8- (b:ye+4%'.r,)0- 8$,6a,'=Qg , 

in which the bracketed terms on the right hand members of (5. 51,2,3) and (5. 54) 
represent the action of the mechanical system. Explicitly, 

- 6~;: = CM~+ F ~,~16+)+ F M,~L,~ ;ii , (5.6) 

- 6Ft3 = [Mo+FMPll(5a,’ , 

M,iLPi2 & + (a,+ g,) M,LL,I qi + M,iLPi (Lpi - LA); 

+ M,iL,i hay/ = 0 . 

‘The forces, moment and surface wave height terms in formulae (4.18) will 
match formulae (5.6) for a finite (or infinite) number of pendula if the following 
associations are made: 

MO+: M,i=M, , 
1 

M,i Lpi2 = 
P(Y, d2 

ki 1) cp! 11 a tah ki h 

(5.7) 
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The amplitudes of the wave height are related to the angular displacements 
of the pendula by 

Thus, the action of the liquid represented by formulae (4.18) may be 
duplicated with a mechanical system --a system of pendula plus a concentrated 
mass and moment of inertia. A similar analogy may be effected with a system of 
springs and masses. 
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CORRELATION OF ANALYSIS OF VESSEL OF GENERAL SHAPE POSSESSING 
ROTATIONAL SYMMETRY WITH EXISTING MSFC ANALYSIS 

Formulae (4.8, 121) hold for containers of general shape possessing 
rotational symmetry about the z-axis, Figure 9, if we approximate the various 
volume integrals occurring in the analysis as 

SS/.(...)dT=JJJ(...)dr+JJdsJ;(...)dz , 
w 7 S 

and if we evaluate directional derivatives over the undisturbed surfaces C , S. 
Such simplifications can be justified. Thus, for the action of the liquid contained 
in the vessel of Figure 9, we have 

-6F:‘=Ml6a,l+p JJyc,,ds , 
S 

(6.1) 

- &F)’ = Ml ha,’ , 

-6L:‘=P~SSS(v~#)‘dT+PSS~“r,,ds+~(a,+g,)SSyrds , 
7 S S 

P~+pij4”+pyba,/+P(a,+g,)r =o , 

where 

A@* =0 , PIT A$=0 ,P<T, 

a@* = 
zl y cos (n, z) - (l+ z> cos (n, y), PcC, S, 

2=” ypFc’ i ct 9 PCS . 

This system may be brought into a form suitable for comparison with the 
analysis of [ 7 1 , if we substitute 

z - L for z , 

L + Ll for 1 , 
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Y 

c 

Figure 9. Arbitrary shaped container with rotational symmetry. 
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and let 

@“= y (z + LJ - La Q” , 

where the coordinates are now reckoned from the center of gravity of the undisturbed 
liquid; L is the distance from the center of gravity of the undisturbed liquid to the 
quiescent free surface; Llis the distance from the center of rotation of the vehicle 
to the center of gravity of the undisturbed liquid (Figure 10). These substitutions give 

- 6FiJ = MI 6a,l+ p fly crt ds 
S 

(6.2) 

- 6F,l = Ml 6a,/ , 

-su,l=~B+PSSIL(y-Lg”)+L1ylrttds+p(a,+g,)SSy~ds, 
S 

p$f+P ~CL(y-L~*t+L~yl+Py6a,~+P(a,+g,)~~=o , 

in which 

A#*= 0 , P<r (6.3) 

3” = 2(L + z) cos(n, y) , pcc1 s 
an L” , 

Ii-3 = PJJJW + z2)dT-4P~~z2dT+2PL2~~#*zcos(n, y)ds+MILF 
7 7 s+c 

We can express the solution for @and c as a generalized fourier series of 
eigenfunctions QI, 

c =f;51~1 , (6.4) 

where Qi satisfies 

A#i = 0 , PcT , (6.5) 
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LIQUID CG 

c 

X 

. 

Figure 10. Arbitrary shaped container with coordinate system located at undisturbed 
liquid center-of-gravity. 
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Introducing (6.4) into (6.5), applying integral transformations, using boundary 
conditions (6.32, 52) and orthogonality condition (6.53)) we get 

- aF> = Ml Bay’+ Ml F I) $+I\” bi ii (6.6) 

- 6Ffl = Ml 6aYl 

- 6Lk/=Iscl 8 + Ml F II$tll” [(a, + g,)bi 5i + [L(bl - hi) - L* b,] ii 3 , 

Et + v Ki 51 + Kt CL(bi - hi) - Libi] 6 + Klbl &a,/ = 6 , 

where 

(6.7) 

bl v11+~I12 =JJyhds, Ktht Vil~~l12=2S~~zg(cos(n, y)ds . 
S 

Formulae (6.61,~, a) are equivalent to formulae (3.47, 46, 48) of [7 I, except for 
terms involving the first moment of mass about the center of rotation of the vehicle. 
In our analysis, such terms have been included in the rigid vehicle dynamics. 
Formula (6.6,) differs from (3.49) of [7 1 by the term Kl (a, + g,) bt 8 . The reason 
for this is that the equations for the action of the liquid in [7 1 were not perturbed 
but arbitrarily linearized. 

On the other hand if we compare (6.6) with (5.6)) we get 

&+$i=MI , 

M,iL,i = MI L 11 @ill 2 bi2 t 

M,i L,? = Ml F It $1 iI2 , 

M,iL,i (Lpi - L,i) = Ml L bi jl+i112 b.h - hi) - L&i] , 

b + MoLoa + F MDi (L,i - Lpi)’ = I$ , 

(6.8) 
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and the first moment of mass about the center of rotation yields 

MO Lo+ ; MM (L,t - Lpi) = Ml LI , (6.9) 

where 

AL 9‘ = Lb, - (6.10) 

Formulae (6.8, 9, 10) are equivalent in all respects to formulae (3.83) of [ 7 1 . 
In other words either analysis yields the same mechanical model even though they 
differ by a term in the free surface equation. 

Methods for computing the eigenfunctions, eigenvalues and associated quantities 
are discussed in the next section. 
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FREE VIBRATIONS OF A HEAVY LIQUID ENCLOSED IN A FIXED VESSEL 

When attempting an actual stability analysis of a liquid propellant space 
vehicle, the first problem the engineer encounters is that of determining the free 
vibrations of the liquid while the vessel is at rest. 

VESSELS OF GENERAL SHAPE 

Putting (3 = i = 0 in formulae (2.29, 31, 32), linearizing the resulting 
expressions, we find that the problem of linear oscillations of a heavy liquid enclosed 
in a rigid, immovable vessel is reduced to one of finding, in the class of functions 
satisfying conditions 

v zz vcp, PCT, (7-l) 

*= 0 , prs, 
an L PCS, i 

cPt+gc=o, PCS, 

all possible functions cp( P, t) , PF 7 satisfying 

Acp= 0 (7 * 2) 

See Figure 11 for notation. 

The solution of the Neumann problem--namely to determine a function cp 
harmonic in 7 and possessing a normal derivative 3 that agrees with a specified 
function f defined on C + S (subject to the restrict&s JJ cpds = 0, JJ f ds = 04>-- 
is furnished by the formula c+s S+C 

cp = Nf . 

N is the integral operator 

v(Q) = jj- N P, Q) f(P) dP 
s+c 

4See notes. 
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Figure 11. Partly filled vessel at rest. 

c2 --w--M-_ 

c 1- 

Figure 12. Two vessels partly filled with a heavy liquid, one enveloping the other. 
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whose kernel is Green’s function for the Neumann problem. According to the general 
theory, the kernel is symmetrical and possesses for P = Q a source-like singularity: 
log p-1 in the two-dimensional and p-l in the three-dimensional problem, where 

p= [(x,-x,)a+(Yp-Yp)2+(zP-z~)2~~ 

N is a completely continuous self-adjoint operator. Using (7. la) we get 

cp(Q) =NCt s (7.3) 

cp (Q) = Jl N P,Q) Ct W dP - 

cp can be eliminated from (7. la): 

Wtt + gC= 0 (7 * 4) 

Assuming that QC S in (7.4), we obtain an integro-differential equation for the 
determination of the linear oscillations. Formula (7.4) is especially useful for 
studying general properties of the system, but not too practical for actual numerical 
computations. To this end we resort to variational mechanics. 

We begin by constructing the Lagrange function L = T - n for our problem. 
As is known, the kinetic energy is, to second order of smallness, 

taken throughout the undisturbed volume T occupied by the liquid. But v2 = ( 7q)” 
and therefore from Green’s theorem, if cpis single-valued, and since Aq= 0 , 

T = ibP j-0 (Wd” cw= ikP j&G ds , 
7 S 

(7.5) 

because of (7. la). In addition, with (7.3) T may be represented as 

T = hP j-j- N Ct - Ct ds . 
S 

The potential energy n of the liquid is given by 

7-4 

(7 - 6) 



This integral can be written as 

PgT{zdT =PgJJbJdT +PgSJJ‘zdT 
7 TlW 

in which 7 is the volume occupied by the liquid in the equilibrium position and 
T1(t) is the volume enclosed between the free surface z = c (x, y, t) and the plane 
S (z=O). The first term in the right-hand member of this expression is the 
potential energy possessed by the liquid if the free surface is replaced by a “lid”. 
If we choose the zero potential to correspond to the liquid at rest, this term may be 
neglected. The last term may be approximated as 

Thus, the potential energy is 

(7 - 7) 

The Lagrange function, using (7.5,7), is 

L=h ~~(Vd2dT-~Pg~~~2 ds , 
7 S 

(7.8) 

or, using (7.6,7) 

L=hP~jht,~ ct-gc’)ds. 
S 

U-9) 

With (7.7) or ( 7.8)) the time integral may be constructed, 

I=Jt Ldt, 
0 

(7.10) 

and, following Hamilton, the equations of motion may also be obtained from an 
isochronous variation of integral (7. lo), 

bI=O. (7.11) 

Consider the natural oscillations of the liquid. Accordingly, let 

cP(P,t)=$(P) cosat , (7.12) 

c (P,t)=@(P) sinat , 

where the natural frequency 0 is to be determined. With the appropriate 
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substitution of (7.2) in (7.1,2) and (7.4), we get 

ii!=” 9PEG9 1 CT@, PCS , 

al) = g@, PCS, 

or 

for the determination of the natural oscillations of the liquid. Except for a few 
isolated cases and prismatic cylinders which we shall consider shortly, closed form 
solutions of the above differential systems are practically impossible to get. 

However, we can make use of variational methods. To this end, substitute 
(7.2) into (7. lo), recalling that L is given by (7.8) or (7. 9)) and integrate over t 
from 0 to Bn/a(full cycle). This gives, after omitting a non-essential multiplicative 
factor, 

(7.13) 

where X = a2/g . Thus, the determination of the natural oscillations of the liquid is 
reduced to a variational problem for functional (7.3). According to the differential 
system, the solution of the extremal problem should be sought in the class of 
harmonic functions. It can be shown that the extremum will nevertheless coincide 
with the value obtained if we consider any functions $I c la as admissable functions, 

being the class of square-summable functions. 

As is known from the theory, the lowest eigenvalue hi is determined from 

rj- (Wtc?)” dT Xi=min ‘r (7.14) 

-IJl3s- 
S 

The second eigenvalue X2 is determined as a solution of the variational problem 
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in the class of functions orthogonal to $$ , if rh. is a function solving the variational 
problem (7.4), and so on. Orthogonality as used here refers to the metric defined 
in 1s , the functions themselves being defined in S. 

To solve the variational problem (7.11) for the functional (7.13) we apply the 
method of Ritz. Accordingly, let us introduce a system of coordinate functions 
{xi(P)] and seek solutions in the form 

$ =fxiai. 

Then, proceeding from (7.13) and (7. ll), we arrive at the following system of 
algebraic equations 

where 

with 

XplJ)=O, j=1,2 ,..., N, 

OLIJ =flb xl’ XJdT, &J= J-J Xl XJdS 
7 S 

(7.15) 

For non trivial solutions of system (7.15) to exist it is necessary and sufficient 
that the eigenvalue Xsatisfy the determinantal equation 

Denote the zeros of (7.16) by X 1 (i = 1, 2, . . . , N). In view of the symmetry of 
matrices cX i J and @ i J , the eigenvalues X 1 are real. The natural frequencies are 
determined from 

a; =xig (7.17) 

The procedure outlined above can be found in detail in books on the subject. 

In most space vehicle applications, the determination of the natural 
frequencies of an oscillation is accomplished by use of digital computers. In such 
cases, the method of Ritz is advantageous because it meets the requirement of 
simplicity in standardizing a vast number of computations. The main difficulty 
encountered in the practical realization of this scheme is in the selection of the 
coordinate functions. Many ingenious selections have been made for specific 
problems. However, no general recommendations are available, but in the process 
of solving the problem several facts should be kept in mind. 

(1) The value of X1 is relatively insensitive to the selection of the coordinate 
functions xi . Thus, if we replace Q1 which produces the minimum of 
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(2) 

(3) 

the functional (7.13) by another & (subject to the restriction 
JJl VI/+ V& d7 # 0), then X1 will change but slightly. 
7 

The boundary conditions for 4 belong to the category of natural conditions 
and therefore it need not be required that the functions x 1 should strictly 
satisfy all boundary conditions. 

Thus, the system of coordinate functions x I may be chosen rather roughly. 
It suffices to provide only for the completeness of the system. Consequently, 
many schemes now in use select the x1 as eigenfunctions of some volume 
containing the volume in question but having a simpler shape. 

The method of Ritz is used at MSFC to solve for the eigenvalues K1 and the 
corresponding eigenfunctions ei of differential system (6.5), as reported in [ 8 1. 
The analysis is the same as that outlined above if we replace X i = El . The solution 
of the inhomogeneous boundary value problem (6.3) for I/.)* utilizing the method of 
Ritz is also contained in [ 8 I . 

Frequently, the engineer needs an estimate of the fundamental frequency of an 
oscillating liquid enclosed in a slightly irregular vessel without resorting to elaborate 
computations. We shall describe a method for doing this which is admirably suited 
to space vehicle tanks. 

Accordingly, consider a heavy liquid enclosed in two vessels occupying volume 
T1 and 72 with equal free surface area S and C1 enveloping X2 (see Figure 12)) i. e. , 
Tl> 72 . 

Recall that in a free vibration, conservation of energy requires that 

T + n = constant (independent of time) 

In a natural free vibration, by definition, the system varies with time in accordance 
with a common factor cos (3 t, so that for our system 

T =? (@)cos”Crt, ff=Ti (@)xsin2Ut, 

where 

and 



r 

Then the energy equation requires that 

T&i. 

Let ?:, and Fz be associated with the liquid occupying the volume 71 and 72 

respectively. Thus, for any function 9, we have 

K(#) > fF2 (9) . (7.18) 

In addition, -let A’ and 9’ solve the problem for volume T1 , and X2 , &’ for 72 . Then 

(7.19) 

But, according to Rayleigh’s principle, we have, on replacing *“‘by #I), 

Using the first expression of (7.19)) we get 

However, FI ( @$/‘i2 (t&l) > 1 as can be seen from (7.18) so that 

A’ > x2 (7.20) 

Thus, if we are given two vessels with the same free surface area but such that 
C1 of the first container envelops CZ of the second container, then the corresponding 
natural frequencies will be greater in the vessel whose volume is larger. 

To illustrate the use of this theory, consider the fundamental frequency of the 
oscillating liquid which in the undisturbed position occupies the volume shown in 
Figure 13. Using known results (see pages 7-16)) we get the following inequality: 

tanh(h,+hr)>% > hnhho 

Similarly, for the volume shown in Figure 14, we get the following approximation to the 
fundamental frequency: 

0% tanh(ho+h) >B > tanhho . 
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Figure 13. Slightly irregular rectangular cylinder. 

f 

ho 

1 s 

hl 

Figure 14. Slightly irregular circular cylinder. 
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PRISMATIC CYLINDERS 

For obvious reasons the natural oscillations of a heavy liquid enclosed in 
prismatic cylinders have received considerable attention in the literature. The 
problem is sufficiently important to warrant special attention. 

With the notation of Figure 15 and the formulae from the general theory 
(7.1,2,), we see that the problem of linear oscillations of a heavy liquid enclosed 
in a fixed prismatic cylinder is reduced to one of finding, in the class of functions 
satisfying conditions 

z=o 

Z = -h 

S 

4 cm 
-- --- -. / ----- \ 

V = Vcp,PCT ) 

2 n = 0 ,-c , 

(7.21) 

z? = 0 Z , PCCa, (z=-h), 

22 = ct, PCS ) (z=o) , 
aZ 

+gc=o, PFS, (z=o) , 

Figure 15. Prismatic cylinder. 

all possible functions cp(P, t), PET satisfying 

Acp = 0, PC7 (7.22) 

Using the method of separation of variables of Bernoulli, we find that for 
functions cp, c series 

cash ki (z + h) 
k‘sinh ki h ’ (7.23) 
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may be constructed which will satisfy (7.21, 22) if 

Aa+kh = 0 ,PrS , (7.24) 

and 

i; + 0: 5, = 0 , (7.25) 

where 

al= (gkitanhkih)* (7.26) 

is the ith frequency of the natural oscillations of the liquid. Note that the cpi , kl 
are the same as those defined by the solution of differential system (3.11, 12). 
The properties (3.13, 15) hold. 

Expansions (7.23) enable us to transform the kinetic energy and potential 
energy into sums of squares of the 5 1 and 51 respectively. Performing the 
transformation, i.e. , substituting (7.23) into (7.5) and (7.7)) we get 

Our variational principle (7.11) yields the familiar Lagrange equation 

$ ( $f) = - g ; hence .&; = - 0: 5‘ . 
1 

T is a positive quadratic form and so is n since we have a stable equilibrium. 
Thus, for every coordinate [i, i # 0, we obtain a stable oscillation 

fi uit 51 =Ct e with CT,"> 0. 

We see from the preceding that the determination of the natural frequencies 
and shapes of oscillation of a heavy liquid enclosed in a prismatic cylinder depend 
on the solution of the boundary value problem 

Acp+k2q= o, PCS 

2 = 0, PCC . 



r- 

We consider, summarily, solutions of this system for several boundary curves. 
Before proceeding, we should point out that the origin of the coordinate system for 
a given shape (cross-section) is not necessarily situated at the centroid of the 
figure. Thus, to conform to our previous assumptions the coordinate system should, 
in each case, be translated to the centroid of the figure. 

(1) When the boundary curve C is a rectangle such as shown in Figure 16, the 
surface harmonics must satisfy 

( a2 + a2 
a7 V 

+ ka) q (x, Y) = 0 3 

%=0 forx=O,x=a, 

I!!&= ay 0 fory=O, y=b, 

It is convenient to arrange the eigenfunctions and eigenvalues in a two- 
parameter set of solutions, and it is readily shown that 

qli, = CO8 inx COST, (i,j =0,1,2 ,...), 
a 

2 kiJ = g2($I+$), (i,j=O,l,2 ,...) . 

(2) When the curve is an isosceles right triangle, Figure 17, the surface 
harmonics must satisfy 

(&+g2+k2)q(x,y)= 0, 
Y 

Fx = 0 for x = 0 , 

2 Y 
=0 fory=O, 

2, = 0 for x’ = am 

The eigenfunctions and eigenvalues obtained from the solution of this 
system are 

CpiJ = cosL$ (i + j) xl co9 II: j yl+ C-1)’ cos Cz (i + j)lcosCz j xl, 

(i,j=O,l,2 ,... ), 
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0. a X 

Figure 16. Rectangular boundary curve. 

x’ = (X+Y)/(2@ 

y’ = (Y-x)/(2,* 

Figure 17. Isosceles right triangle boundary curve. 
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= sin [ ’ a (i + 2 j) x’] sin [s i y’] + sin Cs (i + 2 j) y’lsin C * 1 X’l , 

(i=l, 3, 5 ,...; j=O, 1, 2,...), 

= CO8 [ = a(i+2j)x’]~~~[-& iy’]+COS [--$ (i+2j)y’lcosC--&fX’]~ 

(i=O, 2, 4 ,...; j=O, 1, 29 -.a) 9 

k?, = (q)2[(i+j)2+j21, (i, j=O, 1, 29 .a-) 

(3) When the boundary curve is a circle, Figure 18, the surface harmonics 
must satisfy 

*=Oforr=a. 
ar 

The solution of this system gives 

cPiJ=Ji(kq r> :FsjO, (i=O, 1, 2, . . . . j = 1, 2, 3, . ..) 

qoo = const. , 

J:(kiJa)=O, (i=O,l, 2, . . ..j=l. 2,3, . ..) . 

kl, is the J ‘tn root of the derivative of Bessel’s function of the first kind 
of order i . 

(4) When the boundary curve is a circular annulus, Figure 19, the surface 
harmonics must satisfy 

z=Oforr=a, r=b . 

The solution of this system gives 

qlJ = [Yi’(kiJ a) Ji(h, d - Js ‘(kcJ a) Yi(kiJ r)] $ j 8 , 
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x= r coa 8 

Y= r sin 8 

‘.. 
/ 

,” 

. . 

Figure 18. Circular boundary curve. 

Y X = r cos 8 

Y = r sin 8 

b a 

Figure 19. Circular annulus boundary curve. 
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(i, j=o,1,2, . . ..ifj=O). 

Qoo = const, 

koo = 0 , 

&‘(krJ a) Yi’(kr, a) 
= 0, (i, j = 0, 1, 2, . . .; i # J = 0) . 

J,’ (kq b) h’(kiJ b) 

Yi is Bessells function of the second kind of order i. Some zeros of 
the above determinant may be found in [ 9 1 . 

(5) When the boundary curve is a circular sector, Figure 20, the surface 
harmonics must satisfy 

?!L= 
ar 

0 for r = a , 

0 for 8 = 0, 8 = n (note change of variable in 
Figure 20.) 

The solution is determined 

QIJ = Ji (klJ r) COSTS, (i=O,l, 2, . . ..j=l.2, 3, . ..). 
?7i 

QOO = const. , 

koo = 0 , 

J; (kiJa) = 0, (i=O, 1, 2, . . . . j=l,2,3 ,... ). 
1Q 

(6) When the boundary curve is the sector of a circular annulus, Figure 21, 
the surface harmonics must satisfy 

a2+L-L+ 
(ara r ar 

+k?)Q(r, e)=o, 

s=Oforr=a,r=b, 
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Figure 20. Circular sector boundary curve. 
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Figure 21. Sector of a circular annulus boundary curve. 
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2 = o for 8 = 0, 8= n , (note change of variable in 
Figure 21). 

The solution of this system gives 

Q~J = CYI (k 
lo 

) J1 (k‘J r) - J; (k,J a> Yt$ (kiJ r)] COB j 8 
si z 

(i, j=O, 1, 2, . . ..i# j=O), 

Qoo = const. , 

koo = 0 , 

“6 (ki, d yi’ (kiJ a) 
2% 

= 0, 
Ji (ki, b) y, ’ (kq b) 

2cr 

(i, j = 0, 1, 2, . . . . f # j .- 0). 

(7) When the boundary curve is comprised of two confocal parabolas such 
as shown in Figure 22, the surface harmonics must satisfy 

1 l ( T+,z)+ti]Q(u,V)=O 
u2+Ja au2 av 

z= Oforu=(2p) 4! 

$f = 0 for v = * (2 p) 
3 

The characteristic functions of this system are 

Q‘J=H~~CXIJ,~ uIH,C-X~~ A& VI, ii, j =O, 2, 4, . ..) , 

Qoo = const. , 

While the eigenvalues are determined from 
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Figure 22. Two confocal parabolas boundary curve. 
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H,‘k, ,m 1 = 0 
H.’ [- A ,,.,&m 1 = 6 

(i, j=o, 2,4, . ..I. 

HoYXiJ,~ 1 = 0 
0, j =l, 3, 5, . ..) , 

I%‘[- Xi, ,d2 pkr,’ 1 = 0 

koo = 0 , 

H, and Ho are defined as the sets of solutions given by the following 
differential systems: 

H,"(X,x)+(X+~)H.(X,x) = 0, 

H, (A, 0) = 1, H/(X,0) = 0, 

and 

Ho’(& x) + (A+ ri”) b (A, x) = 0 9 

l&(x, 0) = 0, H/(x, O)=l, 

respectively. Here xa = kua or I? = k? , and.X is a separation 
constant (positive, zero or negative). Power series expansions for 
He and I& are obtained by the method of Frobenius as 

H, (A, x) = 1 -+ Xx2+& (A2 - 2) x4- &- (X3- 14 A) x6 + . . . , 

Il.&, x)=x-$Xx3+&j (X2-6)x5-&(X3-26X)x7+..., 

in which non-zero coefficients of xnare connected by 

n(n- 1) C,+XC,-2 +Cne4 = 6 

H, and & may also be expressed in terms of the confluent hypergeometric 
functions 

Ha (A, x)pxexpCir ‘)F(++; iAl+ ix? 
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Some of the allowed values of kiJ (and XQ) are given in Figurer 
23 and 24 for both the even and odd Quantum numbers (I, j). More 
information may be found in [ ld . 

dn=” I m 
/----I 

0 1 2 3 4 5 6 7 8 

Figure 23. Solutions of Hi (z, x) = 0 and Hl(-a, x) = 0. 

Figure 24. Solutions of Hi (z, x) = 0 and HA(-z, x) = 0. 
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(8) When the boundary curve is an ellipse, Figure 25, the surface 
harmonics must satisfy 

c 1 
aa ( coeha u - cosa v ) 

) + 9 3 Q (u, v) = 0 

&iz 
au 

= 0 for u = uc 

The solution of this system gives 

cpr J = Ql\’ + cp:” 
J ’ 

Q+ce~(v, kiJ $j&?~(U, k&f), (1, f =o, 1, 2s -) 9 

Qp' = J sei(V, kiJja)Ser(u, klJ<), (i, j=l, 2, 3, . ..)v 

where the eigenvalues corresponding to Q’z and Q?i respectively, are 
determined from 

Cd;(&,ki~$=O, (1, j=o, 1, 2, . ..>. 

and 

Se; (uo, kiJ$) = O,(i, j =l, 2, 3, . . .) 

w , sei are the even and odd Mathieu functions of order i, 
respectively. Gel , Sei are the even and odd modified Mathieu functions 
of order i respectively. Primes denote differentiation with respect to 
the argument. Some of the allowed values of kljmay be obtained from 
c 111 

cash u cos v 

sinh usinv 

Figure 25. Ellipse boundary curve. 
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SMALL OSCILLATIONS OF CONSERVATIVE 

SYSTEMS POSSESSING LIQUID CAVITIES 

To facilitate an understanding of the general theory of small vibrations of 
conservative systems possessing liquid cavities, it is worthwhile first to consider- 
several examples. 

INVERTED PENDULUM PROBLEM 

Let us analyze the plane vibrations of the liquid-containing body shown in 
Figure 26 about its position of equilibrium. The oscillating body is an open vessel, 
partly filled with liquid, which is attached to a fixed point o’ by means of a weigbt.less 
rod and a linear rotational spring. 

To describe the motion of the system take two Cartesian frames of reference 
o’x’y ‘z ’ fixed at the point of suspension at a distance 1 below the “capped” free 
surface, and oxyz fixed relatively to the vessel. Reference oxyz is oriented in such 
a manner that oz is measured positively along the outward directed normal to the 
undisturbed free surface. Thus the free surface, denoted by S(t), coincides with 
plane xoy (the plane z = 0) when the vessel and liquid are at rest. 

Let 

z = P (x, Y,d 

be the equation of S(t) when it is displaced. Denote by Z(t) the wetted surface of the 
vessel, and by T(t) the variable volume enclosed by C (t) and S(t). Let C, T and S 
represent the values of C(t), T(t) and S(t) in the undisturbed position. All surfaces are 
assumed to be piecewise smooth. 

Coordinate systems oxyz and o ‘x’y I,’ are related as follows: 

(8. 1) 
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Figure 26. Liquid-containing inverted pendulum. 
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I X’ ‘1 

II .i 

0 0 X 

yf = 0 CO8 9 sin 8 Y 

Zf 0 - sin 8 CO6 8 ii z+l I 

The vessel is moving relatively to inertial space with motion described by an 
observer in inertial space as a velocity 

. 
6 = (II%', u,', uz') = (0, licos 8, -1esin e) , (8. 2) 

= ux,uy,uz ( ‘)=(o, 16, o), 

of 0 ’ and an angular velocity 

G=(wi, q’, a;)=(-& 0, 0) 

=(w,,y,w,)=(-i, 0,oL 

The velocity of an invariable point in the vessel, say P, is 

3 = (v:, vy’ , v: ) = (0, e z’, - e y’ ) 

(3. 3) 

(3. 4) 

= VI, VY, ( v,) = (0, i<z +l), - eY). 

In particular, if co9 (n, y), . . . denote the direction cosines of the outward 
directed normal to surface C(t) at point P, we have 

v,=fj((i+z)cos(n,y)-ycos(n,z)), (3. 5) 

when referred to moving axes oxyz. 

Denote by q (P, t), V (P, t) the velocities of the liquid particle PW(t) at 
time t as estimated by observers in o’x’y ‘z’ and oxyz respectively. Then 

q=co, (z+l)i, -tiyl+v (8. 6) 

in which q, V are referred to the moving reference oxyz. 

Assume the liquid to be homogeneous and incompressible throughout the 
motion. Neglect surface and interfacial tension forces and capillary contact 
effects between liquid and boundary. Moreover, let the absolute motion of the 
liquid be irrotational. Then the motion of the system is completely described by 
the following formulae: 
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Equation for continuity of liquid 

q=v9, v.q=o, PcT(t), (8. 7) 

A8 = 0, PcT(t) , 

Boundary conditions for liquid (kinematical) 

6 [(z+ 1) cos (n, y) - y COB (n, z)] , PC c(t) , 
8[(z+l)cos(n, y)-ycoe(n, dl+ttcodn, 4, Pti(t). 

(8. 8) 

Constancy of pressure at free surface 

P $f + Pg &OS 8 - y sin e) +* PlV#- 6(0, 2 + 1, - y)l* 

- * fj’ PC& + 1)’ + y” I= 0, Pa(t) 

(8. 9) 

Equilibrium condition (sum of torques about 0’) 

Mo(Ra+lca)i+K8-Mcgb sin9+P6fl’I(z+l)~ +y+dT (8.10) 
70) 

+~fll{(z+l)+~ (F)-y$ (~1dT+p~((~+l)~~-y~~1r~cos(n,zks 
T(t) w . 

- P g sin 8 (Z + 1)dT - Pg CO8 8 ydT= 0, 

in which hIcRa is the moment of inertia of the vessel proper, about an axis through 
the center of gravity, parallel to the axis of rotation. lo is the distance from ths 
center of gravity of the vessel proper to the point 0’. Note that the liquid is 
referred to the moving frame of reference oxyz. Formulae (8.7-10) are aufflcient 
to describe the dynamics of the complete system. 

We now make certain simplifying assumptions. We’ suppose that the motion 
of the system consists of small oscillations about the equilibrium position. The 
deflection and slope of the free surface are presumed small. With there 
simplifications we arrive at the following linear description for our system: 

q=V@, V*q=O, PC7 

A@=O, PQT 

(8.11) 
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a@ 6 C(z+l)cos (n, y)-ycos (n, z)], PrC, 
- = 6 [(z+l)cos(n, y)-ycos(n, z)l+ct , PCS, 1 an 

(8.12) 

+- +pg(tbye) = 0 , PCS, (8.13) 

MO (Ra + loa) i+ (K - M,, glc - pg Tl*) 8+ P& [(z + 1) cos cn* Y) (8.14) 

-ycos (n, z)lZ$ ds-Pg ycds=O, 

where l* is the distance from the center of gravity of the undisturbed liquid to 
the point o ’ (center of rotation). In arriving at formula (8.14) the various volume 
integrals occurring in (8.10) were approximated as 

JJJ(...,dT=flJ (...)dT+JJds Jr (...)dz , 
T(t) 7 s O 

and directional derivatives evaluated over undisturbed surfaces. 

Introduce functions cp*, Q , harmonic in 7 , such that 

. 
@= eQ*+Q 

satisfying conditions 

z*= (1 1 + z cos (n, y) - y cos (n, z) , PcC, S 

(8.15) 

(8.16) 

gp= 0 , pee, 
1 an &,Pc3. 

cp* is the potential of Stokes for our problem, and as previously stated are 
determined solely from the geometry of..,x(the plane S being replaced by a rigid 
lid). 

With (8.15), the equilibrium condition (8.14) becomes 

&(R2+b2)~+(K-M.oglo-PgTl*)8+P6~~[(l+z)cos(n, Y) 
S+C 

- y cos (n, z)]Q* ds + P JJ [(l + z> cos (n, y)- Y cos (n, ~‘1% ds 
s+z 

-PgJj-yC ds=O. 
S 
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But, from (8.161), (1 + z) co8 (n, y) - y COB (n, z) = T , and 

pgD[(l+z)cos(n,y)-ycos(n,z)1Q*ds=P@flQ@z*ds 
s+c s+c 

p ,fJ C(1 + z) COB (n, y)- y cos (n, z)l 3?*3P 

s+c 
2 dSzPsfzh at ds - 

Application of Green’s Theorem gives 

Pli JJ Q* $$ de = P i [Js (vQ*)’ dT 
s+c 7 

because A Q* = 0 . Also, A% = 0 , and 

we have 

P j-J * ** de = Pl Q* cct ds . 
s+c at an S 

Thus we may write the equilibrium condition in the form 

I~+P~Q*&ds+Ka6-Pg~y<ds=0 
S S 

(8.17) 

where 

I = MO (R2 + b") + P JJs (vQ*)” dT , 
7 

x= =K-Moglo-PgTl*. 

With (8.15), the condition of constancy of pressure at the free surface (8.13) 
becomes 

P$Q*+P+Pgc-PgYe=O. (8.18) 

Functions Qand c appearing in system (8.17-18) are related by the kinematic 
condition (8.160). This relationship enables us to eliminate 1: . To this end, it is 
necessary to differentiate formula (8.18) with respect to t and make the substitution 
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(8.16a). Hence 

T =+ Ii’+ P 6 ~~(vQ*>(vQ)dT+ &I a (VQ)” dT 
7 7 

(8.21) 

in which 

J = Mo(Ra +loa)+p Jo(VQ*,“dT. 
7 

The integration indicated in (8.21) should be carried out over the volume which the 
liquid occupies in the position of equilibrium. 

Next, we consider the potential energy of the system, 

II,=+(K-mo sbha, H,=pgJllz’dT . 
T(t) 

Ho is the potential energy of the vessel proper, and & the potential energy of 
the liquid. The integral appearing in the expression for HI can be written as 

p g )-J-J-z’ dT = pg az’dT+ pg JJJz’dT 
T(t) 7 Tdt) 

where Tis the volume occupied by the liquid in the equilibrium position, and T1 (t) 
is the volume enclosed between the free surface z = c (xl , xz , t) and the plane 
S ( z = 0). The first integral in the right-hand member of this expression represents 
the potential energy of the liquid if the free surface were replaced by a rigid lid. 
Hence, we can write, without loss of generality, 

PgDJz’dT = pgTz*’ 
7 

where z* ’ is the ordinate of the center of gravity of the liquid. But z*’ = 1” cos 8 , 
so that 

Also, 

Pt$&dT=Pg~jtf[( z +l)cos 8- y sin e]dT, (from 8.1), 
1 71 W 
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However, this lea& to an artifioial increase in the ,order of the ryrtim. Thir 
diffioul@ OM br avoided by introduoing a dirplroomont poWUl btrrminod by 

9 - Dt , 

Udnp D, ryrtem (8.17-18) may be rewritten aa followr: 

I~+PSS9*DrtLdr+nP8-Pg~D,y&=0, 
S S 

(8.19) 

P ii9* + P&t -pgye+PgD, =O. 

It is theoretioally possible to eliminate the potential 9 in (8.18). exprerring 
it through the free boundary Q= N& as in (7. 3). Accordingly, our ryatam assumes 
the form 

Iii+PflIp+c,t dr+& -pgflyt dr=O, 
S 8 

(8.20) 

P ~9*+PNIrt+Pgr:-pgye-o. 

Let us consider the variational formulation for the linear vibrations of the 
inverted pendulum. First we oonstruot the Lagrange fun&ion L - T -n for the 
ryrtem. The kinetic energy is 

T=To+Tl , 

To is the kin&o energy of the vessel proper, and Tl the kinetio easrm of ~JH 
vibrating liquid. With (8.15), we have 

v~=~v9*+09* 

where cp* ir the potential of Stoker which ir determined rolely from the geometry 
of the oavity (8. I&), and 9 ir the potential of wave motion in the verrel ratiriying 
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=pg~~c(l+z)-y0ld7 
TlW 

=pgfld+ C(l+z)-y8ldz 
s O 

The total potential energy of the system is therefore 

in which 

The Lagrange function L is given as 

(8.22) 

(8.23) 

Following Hamilton, the equations of motion (8.17-18) are also obtained 
from an isochronous variation of 

I = s,” L dt . 

Let us now consider the free oscillations of the system. To this end, we assume 
that 

fJ=eOsinat,cp=@cosUt, c=EsinUt. (8.24) 

System (8.20) then becomes 

(ha-~a”) e. -pJJ(gy+cpgU2) z ds = 0, 
S 

(8.25) 

-80p(gy+cp*u2)+pgZ’+PU2NZ= 0. 
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Arsume that the natural frequencies Wi and the principsl modem of 
oscillations B 1 for the free vibration problem (etationary vessel) are known. 
They satisfy the obvious propertiea 

Moreover, let us assume that 

‘:= c Cl =i , L 

since Z i is a system of functions complete with respect to integration over S. 
Substituting this expansion in (6.251)) we get 

after straightforward computation. Introducing this function in (8.251)) we 
arrive at the following frequency equation: 

(x2- Iu?=P/gT; oLa(a, + bi aa)’ 
Lo:- a’ 

(8.26) 

where 

(l3Y , SJ=JJgySidS, etc. 
S 

Equation (8.26) can be solved graphically (see Figure 27). The unknown 
roots are the points of intersection of the straight line Y1 = x2- I U2 with the curve 

Ya=P/Bf; 
o:(ai + bi 0’)’ 

wf _ aa 



Designate by ru the resolvent operator for the operator g E - UaN where 
E is a unit operator. Then, from the second expression of (8.25), 

S:= %r, ky +Q*ua) . 

Substituting this into the first expression of (8.25), we obtain the following equation 
for the determination of the natural frequencies: 

(x2- I a21 - p JJr, ( gy+Q*U2)‘(gy+Q*U2)&=0. 
S 

We know from the general theory of integral equations that the resolvent of an 
integral equation with a symmetric kernel is a meromorphic function over the 
whole complex plane of the parameter U 2. All the poles of this function are simple 
and are the eigenvalues of the kernel. Hence our problem is reduced to finding 
the zeros of some meromorphic function. The inverted pendulum with the liquid 
possesses an enumerable set of natural frequencies. It can be seen that curve 
YZ ( U2) has an enumerable set of poles. 

If one can solve the free vibrations of a liquid in a stationary vessel, then 
the above process may be carried out effectively and the equation for the frequencies 
can be written down explicitly. 

Y2 

Figure 27. Typical plot of frequencies for equation (8.26). 
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For prismatic cylindera (Figure 28), formula (8.26) become& if ‘we neglect the 
inertial propertfee of the veeeel proper, 

pabh(l-$)-( 
I* 

[l-1& tanhkthll’ ‘(8.27) 

in which the eurface harmonica cpi and rigenvaluee ki are obtained from Section 7. Here 

crag= E 
I” ’ 

Qp=6/1, (8.28) 

-f =pJo[ya+ (l+ z)‘]dT . 
7 

In particular, for a rectangular cylinder we have 

yl [(+Q)a] = (FQ” - 
l-$(p) 

1 _ (h ), 
T 

E 1 (?)a 
1,3,5,... 7 

tl+(s>’ cl- $ (:I tanh y] 1’. (8.29) 

(Eqe(E)a 
QQ QQ 

The solution of (8.27) for l/h = l/2 (Figure 29) ie shown in Figure 30. 

A frequency equation similar to (8.26) may be obtained. for the plane vibrations 
of the liquid-containing pendulum shown in Figure 31. 
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Figure 28. Inverted pendulum in the shape of a prismatic cylinder. 
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Figure 29. Rectangular cylinder with l/h = l/2. 
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Figure 30. Solution of equation (8.27) when l/h = l/2 (for UO/U~ = 5). 



z’ 

Figure 31. Liquid-containing plane pendulum, 
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To be sure, it can be shown that the required system of equations for this 
problem is 

14 +xae+PJ-cp*~ttas+pgJ-y~ ds=o, (8.30) 
S S 

in which 

1 = M”(Ra + b”) + p DJ (0 Q” )” dT , 
7 

na =M’gb+PgTl*, 

with 

A@+= 0, PQT 

T= (1 - Z) cos (II, y)+ y cos (n, d , PCS, x9 

and 

Q=N& 

A~J =0, PET, 

* = 0, PCC , 
an I ct, PCS. 

Assuming simple harmonic motion as before and repeating similar arguments to 
those used for the inverted pendulum problem, we find 

Xa-IUa=p/g C , 

bi=-w , 

(8.31) 

exhibiting the same form as (8.26). 
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The plane vibrations of the spring-mass system sketched in Figure 32 gives 
rise to a somewhat similar frequency equation. 

Indeed, the system of equations is given by 

mG+Kq+ p Q”Lt~=O, (8.32) 

PQ+i+PNCtt+PgC=O, 

in which 

m= MO+ P fl(vQ+)‘dT 
7 

with 

.A Q” =O, PET 

a(p++= 
an 

co8 (n, y) PCC, S, 

and 

AQ = 0,‘PCT 

* = 0, pee 
an I ct , PCS 

Assume that 

q = Q sin at, c = P sin 0 t , 

Then, it follows that the frequency equation for the system is 

(K-MD~)=: F ,* , 

8-w 
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c- q1 1 
Figure 32. Inverted liquid-containing pendulum and spring-mass system. 

8-20 



r 

PLANE VIBRATIONS OF A CONSTRAINED LAUNCH VEHICLE 

Consider now the plane vibrations of the liquid-containing body illustrated 
in Figure 33 about its position of equilibrium. The oscillating body is an open vessel, 
partly filled with a heavy liquid, which is connected to a mount by means of a rigid 
weightless rod and linear rotational spring. The mount, in turn, is constrained to 
move horizontally by means of a linear translational spring. When viewed as a rigid 
body, the system has two degrees of freedom. Such an idealization has been used to 
approximate the vibrations of launch vehicles in a constrained condition (attached to 
the launcher). To simplify matters we consider only one tank in the following. The 
results are quite general and can be extended to two or more tanks. 

To describe the motion of the system take two Cartesian frames of reference 
o ‘x’y ‘z ’ fixed at the point of suspension in the equilibrium position, and oxyz fixed 
relatively to the vessel, Reference oxyz is oriented in such a manner that oz is 
meaeured positively along the outward-directed normal to the undisturbed free 
surface. Thus the free surface, denoted by S(t), coincide8 with plane xoy (the plane 
z = 0) when the vessel and liquid are at rest, 

As before let 

z = c (x, Y, t) 

be the equation of S(t) when it is displaced. Denote by C(t) the wetted surface of 
the vessel, and by 7 (t) the variable volume enclosed by C(t) and S(t). Let G , 7 

and S represent the values of Z(t), 7 (t) and S(t) in the undisturbed position. All 
surfaces are assumed to be piece-wise smooth. 

Coordinate systems oxyz and o ‘x’y ‘z’ are related as follows: 

IX 
II Y = 

Z 

X’ 

Ii 

yf = 

Z’ 

1 0 0 

0 CO8 qa - sin qa 

0 sin 92 CO8 qa 

0 CO8 92 sin 92 

0 -sin 92 CO8 * 

X’ 0 (8.33) 

Y’ - 

I I 

Q1 CO8 9a I 

Z’ Q sin qa + 1 I , 
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with 1 the distance from the center of rotation to the undisturbed free surface. 

The vessel is moving relatively to inertial space with motion described by 
an observer in inertial space as a velocity 

ti = (U.‘, u,‘, uz’)=(O, Q+l&scosqz, -l&sinqJ (8.34) 

= ux, UJ, us)=h ill ( cosqs+l&, &sin*) 

of 0’ and angular velocity, 

z = (WI’, 4’, 43 = (- (12 ( 0, 0) 

= (4, 4, 4)=(-ila, 0, 0) 

(8.35) 

The velocity of an invariable point in the vessel, say P, is 

5 = (V,‘, Vy’, Vs’) = (0, b + & 1 cos qs+ qs z’, - b 1 sin 92 - & y’) , (8.36) 

= OL, v,, vz)=b, ill cos~+l~+z~, Qsinq2-by). 

In particular, if co8 (n, y), . . . denote the direction cosines of the outward 
directed normal to surface C(t) at point P, we have 

V, = & Cc08 (n, y) co8 qs + co6 (n, z) sin qs I (8.37) 

+ *‘C(l + z) co8 (n, y) - y co8 (n, z) 1 

when referred to moving axes oxyz. 

Assume the liquid to be homogeneous and incompressible throughout the motion. 
Neglect surface and interfacial tension forces and capillary contact effects between 
liquid and boundary. Moreover, let the absolute motion of the liquid be irrotational. 
Then the motion of the system is completely described by the following formulae: 

Equation for continuity of liquid 

q="@, v- tj=O, PCT(t), (8.38) 

A @= 0 , PET(t) , 
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I- 

Boundary conditions for liquid (kinematical) 

i 

;b C COB (n, y) co6 gp + co6 (n, 2) sin qs 1 (8.38) 

$: 6 [(l + z) co6 (n, y) - y co6 (n, @I’ , PC C(t))- 
a# = 
an b [ co6 (n, y) co6 qs + co6 (n, 2) sin e 3 

+b II (1 + 2) co6 (n, y) - y co6 (n, c) 1 
+ Ct co6 (n, a), PCS(t) 

Constancy of pressure at free surface 

4 
+Pg(< cosqa-ysinqp)+fP-{ Vs=O, PCS(t) 

v=lVQ 4’ 

(8.40) 

Equilibrium conditions 

M”&+Molo&+Kt Q-F,‘=O, (8.41) 

~‘1~ &+M”(Ra+loa)&+KKrg;, -M”~gsfn~+M,‘=O. 

F,.’ and M,’ denote the force and moment produced by the liquid motion along ths 
y/-axis and about the center of rotation respectively. 

Utilizing the same arguments presented previously, we arrive at the following 
linear description of our system 

A$=O, PC7 (8.42) 

ti = 
Qcos(n,y)+&[:(l+z)cos(n,y)-ycos(n, z)l,PGt 

an bcos(n, y)+b[(l+z)cos(n, y)-ycos(n, z)l+Ctn PCS, 

e 
+pgr -pgyqa=o, PCS 

M”&+Mol&+KKtQ-F/=0 (8.43) 
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F,r = - T ay (z)dT =-p fl 2cos (n, y) d8 
stc at 

(8.44) 

M~=PJJ~(I+~)L(~)-, a 
7 ay at a; (z)I.dT 

-I’g,f[YcdS-I’gTl*qs 
S 

= P JJ C (1 + z) co8 (n, y) - y COB (n, z)] g cl9 
s+c 

- p gflyt B-P gTl*q;?. 
S 

l*is the distance from the undisturbed center of gravity of the liquid proper to the 
center of rotation. 

Simflarly, introduce functions CA*, f&j‘, cp, harmonic in 7, such that 

G =hlQl”+& cpB+<p (8.45) 

satisfying conditions 

$f+= cos tn, Y), an &@ = co8 (n y) (1 + z) - co8 (n z) y , f , PrC S , , 

I 

0, PC , 
(8.46) 

ct, PCS. 

(pp are the potentials of Stokes for our problem. They are determined solely from 
the geometry of 7 , the plane S being replaced by a rigid lid. 

With (8.45)) the force expression (8.431) becomes 

FY’ = P &G$Qf ~0s tn, Y) dS - P b D ~6accos (n, y) ds - P Jl 2 COB (n, y) dS 
c+s c+s at 

acpf But, from (8.46), cos (n, y) = an , and 
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- pzJp COB (n, y) dS = - w 22 Q$ an at d8 l 

Application of Green’s theorem gives 

P in flvQf VQ? dT, 
7 

because A cpf = A Q# = 0. Also since A $f = 0 and 

we have 

Thus, the expression for the force (8.431) takes the form 

Fa’=;iP~~VQiCVQ~dT-ep~TSVM”VQsdT-p~Q~rL~ 
7 7 S 

Again, with (8.45), the moment expression (8.43s) becomes 

(8.47) 

&’ = P 61.l~ CO 
+ 

+ Z) COB (n, y) - y cos (n, z)l(pP dS+P &zJ$l+Z)Dos(n.Y,-y cos(ndc/b*ds 

+ p fl[ (1 + z) COB (n, y) - y COB (n, z)] z ds - P g 1 Y C dS - P 7 g l*m l 

S s-s 

However, from 

P 4ss C(l+z) 
c+s 

(8.46), (1 + z) cos (n, y) - y COB (n, z) = 2” , and 

COB (n, y) - y co8 (n, ~1 Q?dS = P & D-Q? dS = p & JlJVti VQf dr, 
c+sa n 7 

p &SDS [(I + 2;) COB (n, y) - y cos (n, z)] Q$ do = P &II!~~‘& do = P&I g,fvQs vQa dT . 
7 
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Also, 

P JJ I: (1 + z) co6 (n, y) - y.cos (n, z)] $ dS = p sf i!Y?% it!Pds, 

c+s ccs an at 

and since A z = 0 , . . ,. . . 

?!fL= 
\ 

0 ,-PCC, 

an 
1: tt 9 PCS, 

we get 

PJJI:(l+z)cos(n, y)-ycos(n, z>l 
c+s 

2 dS = P jj-Q2 ttt ~ . 
S 

Hence, the expression for the moment (8. 44s) takes the form 

Mx’ = & P j-u OQ# vQ+i dT + ia P j-0 VQt vQ#dT+ p l. Q# ctt dS 
7 7 S 

(8.48) 

-PlzJJYC~-Pf3Tl”qP * 
S 

With (8.47-48)) we may write the equilibrium conditions (8.43) in the form 

f ha&+! b.dict+P~Q,+&t~+~ e,cdS = 0, (8.49) 
S S 

where 

%n=M:n+Pfl VQ,” VQ$dT, 
7 

MO Mob 
M& = ; 

Mob MO (ba + Ra) 

b, = KO,, - P gTl”6.z , 

Kt 0 
Ko,, = 

0 K, -M'gb 

e, = -PgybAa . 
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The condition of constancy of pressure at the free surface (8.423) becomes 
2 

i!f 
2 

PFG*im+p at +pgc+F e,q,= 0. 

We can eliminate potential Q from this equality, expressing it through the free 
boundary Q = Net as in (7.4 ) . Hence, 

P~Q: e+PNCttcpgC+fb% =O. (8.50) 

Variational Formulation: Let us construct the Lagrange function L = T - H for 
our system. The kinetic energy may be written as 

T = T*+Tr 

T* is the kinetic energy of the vessel proper, and T1 the kinetic energy of the 
oscillating liquid. With (8.45)) we have 

VQ= ;IIvQl”+;la vQ#+vQ, 

where Qf , Qt are the potentials of Stokes which are determined solely ‘from the 
geometry of the cavity (8.4%) and Q is the potential of wave motion in the 
vessel satisfying (8.45s). Thus 

T=1/2z c a., b qn+c 6 PB/vQf vQ dT+1/2pJfl(vQ)adT. 
7 7 

(8.51) 

with a,,, previously defined. The integration indicated in (8.51) should be carried out 
over the volume which the liquid occupies in the position of equilibrium. 

Consider the potential energy of the system, 

n= n*+rI, 

H”=1/2K: Al’ +1/2K,qsacM+ qaa, k=Pgj&‘dT . 

TV) 

H “is the potential energy of the system in the absence of liquid, and H 1 the 
potential energy of the liquid. The integrsl appearing in the sxpresslon for nl 
can be4 written as 
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P gsss z’dT=p gn[ z’dT+ P ga z’dT 
70) 7 n(t) 

= Pgj&‘d7+Pga(1 +z)cosqz-y sin@]dT, 
7 71(t) 

where 7 is the volume occupied by the liquid in the equilibrium position, and 
T1(t) is the volume enclosed between the free surface z = c (y, z, t) and the 
plane S(z = 0). The first integral in the right-hand member of this expression 
represents the potential energy of the liquid if the free surface were replaced 
by a rigid lid. Thus, we can write 

p gJ[Jz’dT=pgTz# 
7 

where z*’ is the ordinate of the center of gravity of the liquid. However 
z* ’ = l*cos q~, so that 

p g~&‘dT=~gTl*cosQ=- 1/2P gTl*Q?+const. 
7 

In addition, 

M 1/2Pgjpds-Pgq~~Yc~. 
S S 

The total potential energy of the system is therefore 

in which b,, and e, are the same quantities defined earlier. 

By definition, the Lagrange function L is simply 

(8.52) 

(8.53) 
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+1/2Pfl,kVQ)adT-1/2G C b,,q.qn -1/2P$l C2ds 
7 

According to Hamilton’s principle 

81 = 0 (8. W 

where i51 ie an ieochronoue variation of the llne integral 

I = sot L dt , 

Ueing (8,63) rewrite (8.54) as 

But, from (8.4&) and A Q = 0, we have 

Moreover, it followr from (8.46~) that 

Alro, from (8.4%) and A# - 0 , we @t 
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Similarly, we can show 

Therefore (8.55) may be rewritten in the following way: 

Integrating by parts and using the isochronism of the variations, we obtain 

+ ~(p~~Q~+P$+ Pgc+t e, q,‘)bc dS]dt=O. 
S 

By virtue of the arbitrariness of the variations, we get from this 

+mp:+$un+P Q%t*+o e,~dS=O 
S 

(8.56) 

PFq.Q?+P$$+PgC+g e, q.=O 
1 

which is the same as before if we put Q = Net in the last expression. 

Free Oscillations: Before we proceed to determine the free vibrations of the system, 
let us simplify the problem somewhat further. Let the free surface be replaced by 
a lid (c - 0 in (8.56)). Then, if the system is conservative and its position of 
equilibrium stable, there exist principal coordinates 51 such that the linear trans- 
formation 

(8.57) 

reduces [ 12 lto two independent second order differential equations in t1 . 
& satisfy the orthonormal conditions 
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Thus, according to vibration theory, we obtain 

(8.58) 

where n, are the natural frequencies of the system when the free surface is 
covered with a lid, and 

2 
Q?=t &IQ:, 1 V 1 = C 0.1 e, . 

With (8.57)) condition (8.5q becomes 
2 

P~Q~“i~+PN~tt+Pg<+~~&=O. 
1 

(8.59) 

Equation (8.58-59) are sufficient to determine the free oscillations of the system, 
and are somewhat simpler than (8.56). 

Suppose 

t1 = X1 sin a t , c = 5 sin U t . (8.60) 

With (8.60), system (8.58-59) becomes 

(Ua - 07 ) X1 - J-J (U, - Ua pQ’fe* ) * = ds = 0 
S 

(8.61) 

P(0” N - g) - f (u, - U’pQf”)& = 0 

Let the eigenfunotionr Xg, of the free osoillation problem (stationary veeaal) 
be known. They satisfy the obvious properties 

Sinoe IEk is a system of functions oomplete with rerpeot to integration over 9, it 
is natural to arsume that 
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With the substitution of this expansion in (8.61) and appropriate use of the 
orthogonality relations, we arrive at the following system of algebraic equations: 

(CT2 - 0:) xl + 2 (aa Alk - Bu) ck = 0 , (1 = 1, 2) , (8.62) 

(& (Ia-&,Ck++aAlk- Blk) x1 = 0 , (k = 1, 2,. . .) 

where 

Equations (8.62) hold for each 1 ‘and k respectively, so that we have a set 
of linear simultaneous equations for the coefficients X,, Xa, cl, ca, . . . , which 
are homogeneous. Such a set of equations will have a non vanishing solution only 
if the determinant formed from the coefficients of the unknown X1 and ck vanishes. 
Therefore 

~ a=- ta1= 0 Ua&l - B11 U2A~a-Blz . . ..u2Aln- B1, 

0 ua - ng aa&-Bzl UaAza -Baz . . ..U” AZ,,-B&, 

uaAll-B~l uSA=-& U1u 2- B1 0 . . . . 

aa Alz -Blz uaAa-- 0 a2ua-Bn . . . . 0 

. . . . . . . . . . . . . . . . . . . . . . . . 

Qa Al, - I%,, ua A2n - &n 0 0 . . . . an u2 - 8, 

(8.63) 

= 0. 

The elements symmetrical to the main diagonal are equal; hence the roots of 
Uaare real. 

We see that the computation of the natural frequencies and forms of 
oscillations for the system is a very laborious process. If the coefficients of 
the terms accounting for the reciprical oscillations are small, i. e. , if the natural 
frequencies of the system differ but little from 0, , then we can simplify the 
calculations by using perturbation techniques. 

Perturbation methods are particularly appropriate whenever the problem under 
consideration closely resembles one which is exactly solvable (such as this problem). 
It presumes that these differences are not singular in character, indeed, that one 
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may change from the exactly solvable situation to tb problem under consideration 
in a gradual fashion. This is expressed analytically by requiring that the 
perturbation be a continuous function of a parameter X , measuring the strength of 
the perturbation. 

With X , we write (8.62) in the form 

(UD - n:)Xr+X F (@A&l,=0 

(Yr~‘-~r)cr+XC(UaA,lr-Bllr)X1=O 
k 

Solutions to this system of equation6 are sought aa infinite seriea in powera of X , 
a0 

xl=c x1,x’, ck 
0 

Equating the coefficients of the auccerrive powers of X to zero givea, for zero order 
quantities, 

cy, (0; (Yk - fik) = 0. 

This eystem of equations haa a solution if 00’ = 0: or UC? = @k /ar . Since we wish 
to determine the frequencies of the system close to thoee of the system when 9 is 
replaced by a rigid lid, the eolution %a = @k/ak must be rejected. To be specific, 
let Uca =n:;thenXsc =CW,= 0 , and we may take Xm = 1. For the first order 
quantities, we have the equations 

x,&7~-n~)=-u~, 

XPI (u8 - CM) = 0 , 

ok1 (@,g ahr - bk ) = - (A,k a,‘- &I,) , 

The condition for rolvability of the firrt equation of thir eyetem ir 

Hence we can always assume that Xl1 = 0. Alro, it follows that 
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For the second order quantities, we find that XI,S and U$ satisfy the equation 

For this equation tc be solvable, it is necessary and sufficient that the right-hand 
member be equal to zero; 1. e. , 

wherein we have substituted the previously obtained value for CU. Therefore, we 
have to the second order 

u= = n,‘+ ~2 c (All, n,a - Blda 
k @‘a,- @k 

(8.64) 

we may use (8.64) for X = 1. The foregoing scheme is a modification of the 
Feenberg perturbation formula [ 6 1. 

Let us introduce the linear transformation (8.57) in the expressions for 
the kinetic energy (8.51) and the potential energy (8.52). Thus, in the new variables, 
we have 

T =TI+E 51 p flJ-vQf*vQdT+ 1/2pJJ (vQ)“dT, 
7 7 

where 

The Lagrange function becomes 

- m P iz JJ T2 ds , 
S 
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or, since 

- 112 P g JJ ca ds 
S 

Substitute (8.60) into the line integral 

I =s’L dt , 
0 

using the form of L given by (8.66), and integrate over t from 0 to $ . 

This gives, after omitting a non-essential multiplicative factor, 

I=ua [1/2! X:+tX,PJ[Qps dS+ 1/2pJJN=’ = dd . 
S S 

(8.66) 

(8.67) 

E=dSj. 

Thus the problem of free oscillations of our system is reduced to one of determining 
vector Xl, function Z , and parameter U which make the variation of functional 
(8.67) vanish. To be sure, if the eigenfunctions of the free oscillation problem for 
a stationary vessel are known, the extremum of functional (8.67) gives the equations 
(8.62). If these are not available we can solve the variational problem by application 
of the method of Ritz. 

Let there be a system of functions Xk complete with respect to integration over 
S, and assume that 

After construction relations 

aI o aI o ax1 = , CCk = 9 
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There results tbs ryrtem of algsbnie OCptfOM 

.(cP - Cl?) x1 + ” (00 Ai! - Bu) CL - 0, ( 1= 1, 2) , 

i (u’ Alk - Blk) x, + 1 (&tlk - &k) Cl- 0, (k = 1, 2,. l l , d , E 

(8.68) 

where 
&r =p ,j-lQF xk a, Blk=~hXkd8, 

8 S 
alk =p fSN&*&~ t hk=PgflxIxk~, 

S S 
and (YIk = c&l (from Green9 formula). 

Equations (8.68) hold for each 1 and k rerpectively , 10 that we have a 
set of linear aimultaneoua equations ‘for the coefficients Xl, x0, cl, cs, . . . , , Cn 9 
which are homogeneous. Such a set of equations will have a non-vanishing solution 
if the determinant formed from the coefficients of the unknown X1 and ck vanishes. 

Therefore 

u? - n,’ 

0 

u=Au -&I 

uaAs - Bjs 

. . . . 

Q’ Al, - &n 

0 

u= - nl 

U”Ao1-Ba 

U’k8-83 

. . . . 

u%C%A 

Q’ An - %I 

uaAa-& 

u= a11 - 81 

u=aa- Bal 

. . . . 

u’a*‘- &‘l 

Q* Ala - & . . . . U’ A;, - B1, 

u=Am - B’l . . . . ua AaJ - Baa 

U’aD - &2 . . . . 0’ ah - &n 

4’0119 - Ba . . . . Ua Oran - fia 

.a.. , . . . . . . . 

uaad - BS . . . . u2am - 8, 

(8.69) 

= 0. 

The elements symmetrical to the main diagonal are equal; hence the roots U2 are 
real. 

We now consider the general theory of small vibrations of a conservative 
system with a li@d cavity. 
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SMALL OSCILLATION THEORY 

Now consider the motion of a solid body with a liquid-containing cavity about 
the position of equilibrium. As previously, but with slightly different notation, we 
assume the velocity of the liquid particles to be represented as 

It has been shown that 
3 3 

tj” = F u1 VQ,* + c 0, VQ,“+3 (8.70) ’ 
1 

where Q,” = (m = 1,2,. . . ,6) are Stokes potentials satisfying the boundary value 
problem (2.3 5). Hence, function Q must satisfy 

z = c (P, t) is the equation of the free surface in the system of coordinates rigidly 
connected with the body. 

Now suppose the motion of the solid body to be defined by the generalized 
coordinates WI, . . . , cy ’ 6. Then, by analogy with (8.70), we write 

6 
ij=“Q+c ciu,“Qs” 

1 
and assume the expression for the kinetic energy of the system as follows 

+ f iu, P flJvQ VQf d7. 
7 

Here 

Mm = M:,, + P JJ v Q,” vQ$dT, 

(8.71) 

and 

1 Mz,, 3 is the matrix of the coefficients of the quadratic form representing the 
kinetic energy of the solid body. 
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Let us now consider the small oscillations of a conservative system K which 
has N degrees of freedom, and let CY, (m = 1, 2, . . . N) be the generalized coordinates 
of the system. Suppose there is a solid body with a liquid cavity among the members 
of this oscillatory system. Then, without loss of generality, the kinetic energy of 
system K can be described by (8.71) in which the summation now extends from 1 to N. 

We now compute the potential energy n of system K. If the free surface is 
“capped” off (inthis case we denote it by K*), then 

(8. 72) 

If we consider only the case when the equilibrium of system K* is stable, n*is 
positive definite. This assumption is very important because if K” is unstable 
the deviation rapidly ceases to be small and the theory makes no sense. 

If the liquid does not fill the cavity completely, the potential energy of K is 
made up of (8.72) and of the potential energy of the oscillating liquid. The latter, in 
turn, may be represented as a sum of two terms, one of which is the potential energy 
of the liquid oscillating in a fixed vessel 

l-4 = 1/2PgJJ c2 ds 
S 

As the liquid participates in the motion of the system through transport, its 
potential energy also depends on the coordinates 01.; consequently it should contain 
a term of the form 

n,=$J em C ds 
S 

where functions e, are determined solely by the geometry of the cavity. Since 
JJ 5 dS = 0 we may assume, again without loss of generality, that JJe, dS = 0 . 
S S 

Hence, we write the potential energy of system K as follows: 

(8.73) 
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The problem may be simplified somewhat if we introduce new variables . 
Since system K”is conservative and its position of equilibrium stable, there exist 
principal coordinates t 1 (t) such that the liwar transformation 

simultaneously diagonalizes n *and T”: 

T”=1/2E &,a, XT* =1/2E niat , 
1 1 

0, are the natural frequencies of the system when the free surface is “capped-off”. 

In the new variables, we have 

T = T*+ ; &, /‘JovQ VQ,“” dT + l/2 p flJ (v Q)” dT, 
7 7 

S 

(8.74) 

Here 

By eliminating Q and using Green’s formula(8.74i) becomes 

T = Tit+ F p,D Q$” <t ds + l/2 P Jj- N Ct * Ct df3 . 
S S 

(8.75) 

Applying Hamilton’s principle and repeating the considerations used in the 
construction of the launch vehicle equations, we obtain the following system of 
equations for the oscillations of system K: 

(8.76) 

System (8.58,59), which determines the oscillations of the launch vehicle, 
was a particular case of the system of integro-differential equations (8.76). 
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Using the methods of functional analysis, we can show that the following 
properties hold: 

Theorem I. If system K consists of a finite number of conservative members and 
contains a finite number of cavities partly filled with liquid, and if the potential 
energy of the system has a minimum in the equilibrium position, then 

(1) In the motion of this system about the equilibrium position there 
exist principal oscillations, and system (8.76) has a solution of the 
form 

a, = x, ,ict , c = E eiat ; 

(2) The frequencies of these oscillations are real quantities and c,, - 00 
with n + m . This means that the position of equilibrium is stable; 

(3) Any free motion of K may be represented as a superposition of 
oscillations, i. e . , the system of principal oscillations is complete; 

(4) Free oscillations and frequencies can be found by Ritz’s method. 

Theorem II. If the potential energy is not a minimum in the equilibrium position, 
then there is at least one negative quantity among the U,” . 
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S/NOTES PERTAINING TO TEXT 
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NOTES PERTAINING TO TEXT 

’ ‘2 inertial space = ‘2)moving space 
iii x ij 

2 When S(t) is a free surface consisting of material particles moving with velocity 
v. If z - c = 0 is the equation of the surface, we must have d ( z - c )/dt = 0 so that 

or 

But 

It = (VI, vy, VJ - ( - 2 , - gf , 1) . 

t-2, - $f, l)=V (z-c), 

and since 

V (z - C) = (co8 (n, x) , co8 (n, y), co8 (n, 2.2 ) /COB (n, z) 

we get 

where 

vn=CtcOs(n, z) , 

vn = v, co8 (n, x) + vy co8 (n, y) + vz COB (n, z) 

is the velocity along the normal to S(t) . 

Similarly 

9n =Vn+&cos(n, z) . 
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3 This could also be anticipated from the divergence theorem, 

JIS V *VdT=O=ss v, ds =fl Ctcos(n, zhs =j-,j- Ct dxdy . 
w w+m SO) S 

4 
The first of these conditions is introduced to eliminate an arbitrary additive 
constant, and the second condition must be satisfied by the ry)rmal derivative 
of any function harmonic in the &main 7. 1 
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